BUILD THE LASER LISTENER

All about
high-tech
surveilance

BUILD THE VIDEO

PALETTE
It generates special
video effects

DIGITAL AUDIO TAPE Tomorrow's audio-tape format is here today

SCR's AND TRIACS
28 practical circuits

PLUS:

\star Video News \star Audio Update \star Satellite TV \star Ask R-E

October 1987

Vol. 58 No. 10

BUITI THIS

39 LASER LISTENER
Eavesdrop using a beam of light
Richard L. Pearson

48 VIDEO-EFFECTS GENERATOR

Part 2. Building, aligning, and using the generator.
Rudolf Graf and William Sheets

56 R-E ROBOT
 Part 11. Adding the arm.

Steven E. Sarns

75 PC SERVICE

Use the direct-etch foil patterns to make circuit boards for the videoeffects generator.

45 DIGITAL AUDIO TAPE

Tomorrow's recording medium is here today.
Brian C. Fenton, Managing Editor

60 NON-VOLATILE MEMORY IC's

Giving memory to memories.
Robert Grossblatt

64 WORKING WITH TRIACS AND SCR'S

A handy cookbook for experimenters and builders.
Ray Marston

1) Maprinits

6 VIDEO NEWS

What's new in this fastchanging field. David Lachenbruch
22 EQUIPMENT REPORTS
Mondo-Tronics Space Wings Robot.

33 COMMUNICATIONS CORNER

Light makes the perfect wire. Herb Friedman

80 SATELLITE TV
International politics, part 2.
Bob Cooper, Jr.
83 AUDIO UPDATE
Magnetically shielded speakers.
Larry Klein
101 DESIGNERS NOTEBOOK
Overvoltage indicator.
Robert Grossblatt
104 NEW IDEA
Outdoor-light controller

PAGE 85

DIGITAL AUDIO TAPE

PAGE 45

ATMUO:

126 Advertising and Sales Offices

126 Advertising Index
10 Ask R-E
4 Editorial
127 Free Information Card
15 Letters
106 Market Center
26 New Products

Alexander Graham Bell experimented with light beam communications back in the 1880's. The technology of the day prevented his success then, but now, thanks to the availability of low-cost lasers, experimenters can apply their energies to that fascinating topic. This month, we'll show you a simple listening device that will let you use modulated laser light for communications over distances of several hundred feet or more. It can even be used to secretly listen in on conversations. To find out more about light-beam communications, turn to the story on page 39.

COTINGNT:TMONH:

THE NOVEMBER ISSUE IS ON SALE OCTOBER 1

SPECIAL SECTION: ALL ABOUT SURFACE-MOUNT TECHNOLOGY

A Radio-Electronics Special section that focuses on that exciting building technique. Included will be a variety of circuits to get you started.

DIGITAL IC TESTER

A computerized, in-circuit tester.

EARIY DAYS OF RADIO

Some early amplifier circuits.
and much more!

COMPUTER DIGEST

Hands-on report: Turbo boards

[^0]
Radio-
 Electronics.

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback,
editor-in-chief, emeritus

Larry Steckler, EHF, CET,
editor-in-chief and publisher

EDITORIAL DEPARTMENT
Art Kleiman, editorial director
Brian C. Fenton, managing editor
Carl Laron, WB2SLR, associate editor
Jeffrey K. Holtzman,
assistant technical editor
Robert A. Young, assistant editor
Julian S. Martin, editorial associate
Byron G. Wels, editorial associate
M. Harvey Gernsback, contributing editor
Jack Darr, CET, service editor
Robert F. Scott, semiconductor editor
Herb Friedman,
communications editor
Bob Cooper, Jr. satellite-TV editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch, contributing editor
Richard D. Fitch, contributing editor
Teri Scaduto, editorial assistant

PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Robert A. W. Lowndes,
editorial production
Andre Duzant, technical illustrator
Ronald Dee, assistant technical illustrator
Karen Tucker, advertising production
Marcella Amoroso, production traffic

CIRCULATION DEPARTMENT

Jacqueline P. Cheeseboro, circulation director
Wendy Alanko.
circulation analyst
Theresa Lombardo, circulation assistant

Typography by Mates Graphics
Cover Foto by Nick Koudis

Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 126.

IIPI

TEST EQUIPMENT THAT MEASURES UP TO YOUR \#.JDR instrumants

DMM-300 \$79.95

3.5 DIGIT DMM / MULTITESTE= Our best andel A highly accurate, full fure von DMM oaded with many extra featurer. Audible CD Jinuity, capacitance, transisto momperature and conductance elon one harc Leld mete. Temperature probe, test leads an: battery insladed.
Basic D= accuracy: plus or minus 0.25% DC voltuce: $200 \mathrm{mv}-1000 \mathrm{v}, 5$ range AC voltuge: $200 \mathrm{mv}-750 \mathrm{v}$, 5 ranges Resistar ce:
6 ranges
AC/DC current: 200uA - 10A, 6 ranges Capacitarce: 2000pf - 20uf, 3 ranges - Transistor tester: hFE test, NPN, PNP Temperat are tester: $0^{\circ}-2000^{\circ} \mathrm{F}$

- Conduc ance: 200ns
- Fulty over-load protected
- Input imp-rdance: 10 M ohm

DMMM-200 \$49.95

3.JD'G TFULL FUNC-ION DPM Mishacciecy. 20 amp currentcapabilizy and menv r af ge settings make this nodel idael for semous isench or field work. Titt stand for ha eds-7ee operation. 2000 heur batter, life with 5 andard $9 v$ cell. Probes and batery incuded

* Easir DC accuracy: plus or minus $0.25 . \%$
* IC vo tege: $200 \mathrm{mv}-100 \mathrm{cv}, 5$ ranges
* 4 C vitage: $200 \mathrm{mv}-750 \mathrm{v} 5$ ranges
- Fesistance: 200 ohms - 20 M ohms.
- rarges
* AC , D Surrent: 200uA - 20A. 6 renjes
* Fully bues-foad protected
- Iaput insedance: 10M ohm
* $180=38 \times 37 \mathrm{~mm}$, weighs 320 grams

DMM-700
 3.5 JIGIT AUTORFNGING DMM Auto ange convenience c- fully menusl operation Selectable LO O M moce permits accumate in-circuit resistance measurements involving semi-conducte-juncticns MEM mode for measurements \exists lative to a specific readiag. Probes and battey included.
 - Basic DC accuracy: plue or mines C.5\% - DC-voltage: 200 mv - - D00v, amtoranginy
 * AC voltage: $2 v-750 \mathrm{~h}$ autorangir$2 v-750$ autorangi or 4 manua ranges
 - Resistance: 200 ohms -20 M chmes
 aubranging
 * $A C=$ DC current $20 \mathrm{~mA}-10 \mathrm{~A}, 2$ ranges
 * Fuly over-load protectel
 * Audible continuity teste
 - Inp st impedance: 10 M shm
 * $150 \times 75 \times 34 \mathrm{~mm}$, weighs 230 grams

DMM-100

$\$ 29.95$
3.5 DFGI $^{-}$EOCKET SIZE DMM Shirt-pecke certability with no compromise n features wo sccu acy. Large, easy to reac $5^{\text {' LCS }}$ disolay. 2600 hour batter life with 3tandary 96 cei pr vides over twe years of average 1 se Frober and battery included.

* 彐asic CC 子ocmacy: plus or minn 0.5%
- DC vot age: $5 v-1000 \mathrm{v} .4$ rang es
- AC nst age: $000 \mathrm{o}-750 \mathrm{v} .2$ ran je
- Rasistace: Zroh-ns - 2 M ohrrs 4 ranges - DC carert: $=\mathrm{mA}$ - 2A. 4 ranges
- Fully eter-foas protected
- Erpur apedzance: 10 M ohm
- $\$ 30 \times .5$: 23 mm , weighs 195 grams

MODEL $2008 \quad \$ 349.95$
20 MHZ DUAL TRACE OSCILLOSCOPE Model 2000 combines useful features and exacting qualrty. Frequency calculation and phase measurement are quick and easy in the X-Y Mode. Survice testmicians will apprecinte the TV Sync circuitry for viewing TV-V and TV-H as well as accurate synchronizarion of the Video Sigral, Blanking Pedestals, VIFS ant Verticle/Horizontal mync pulses.

- Las quality compensated 10 X probes included - Built-in component teste
*XYoperation "Bright 5" CRT *TV Sync filter

MODEL 3500

35 AHz DU
AHZ DUAL TRACE OSCILLOSCOPE Wide bandwidth and excesptional 1 mV /DIV sensitivity make the Model 3500 a powerful diagnostic tool for engineers or technicians. Delayed triggering altows any portmon of a waveform to be isolated and expanded for closer inspection. Variab es Holdoff makes possibee the stable viewing of complex waveforms.

* Lab quality compensatad 10 X probes included
- Delayed and single sweep modes
*- Axis intensity modulation \quad \#.Y operation * Bright 5"CRT TV Sync filter

2 YEAR шанRанті ON ALL MODELS
 DPM-1000
 3.5 DIGIT PPOBE TYPE DMM
 Autoranging, pen style design for the uttimate in porta'zility and ease of use. Custom 80 pin LSI ch.p increases reliability. Audible contieuity tester and data hald fearure for added convenience. Case, test leads and batteries incuded.
 * Basic DC accuracy: plus or minus 1\% * AC valtaye: $2 v-500 \mathrm{v}$, autcranging - Resistance: 2 x ohms - 2 M : chms. autoranging
 - Fully over-load protected
 * Inpur mipedance: 11 M ohm
 $* 152 \times 28 \times 17 \mathrm{~mm}$, weighs 75 grams

ORDER TOLL FREE
JDR INSTRUMENTS (408) 866-6200• FAX (408) 378-8927 • Telex 171-110 800-538-5000

GUEST EDITORIAL

Another attack on home taping

Consumers will soon have the advantages of digital sound quality in a compact cassette tape format, but the usefulness of the technology is threatened by special interest legislation that would prevent home recording of records, tapes or compact discs.

The new technology is known as Digital Audio Tape (DAT) recording and, like compact-disc technology, it uses electronic pulses to store and play back sound, offering the public much-higher quality than is possible on conventional analog recording equipment. In particular, the DAT will create a market for pre-recorded audio cassettes that sound as good as compact discs.

The recording industry is urging Congress to enact legislation that would require DAT recorders to incorporate anti-taping systems that would make it impossible for consumers to record most prerecorded or broadcast material, including material they have purchased and are recording for their personal use. The anti-taping IC is activated if the source material is recorded with a notch inserted in the high frequencies. The notch, which may be audible to a listener and could distort the music, would trigger the IC to stop the recording.

The legislation, HR 1384, sponsored by Rep. Waxman (D-CA) in the House of Representatives, and S 506 , by Senator Gore ($\mathrm{D}-\mathrm{TN}$) in the Senate, would discourage consumers from buying this high-potential technology. Historically, consumers have accepted new recordinng technology only when it has offered them the chance to make tapes themselves. The anti-taping chip, however, would prevent home taping of notched source recordings and of tapes or records for use in car stereos and portable players.

DAT has extra advantages in that DAT tapes can be made much smaller than conventional cassette tapes, and they can store huge amounts of information -- nearly one gigabyte (one billion bits). The information storage capability gives DAT enormous potential in connection with personal computers.

Although recording companies claim that they would produce higher-priced recordings without anti-taping notches, it is highly questionable how many would be available, or at what price. Furthermore, research now shows that the antitaping encoding process interferes even with sound quality on DAT playback.

Anti-taping legislation runs directly counter to the Supreme Court's "Betamax" decision, which held that consumers have a right to record aired material for their personal use. Just as that Supreme Court decision did not stop sales of prerecorded video tapes from topping five billion dollars, there is no evidence that home DAT recording will in any way limit the profits of the recording business.

The recording industry is plain wrong in stating that DAT recorders can make perfect copies of prerecorded material through conventioal analog inputs. The DAT is simply a better tape recorder, with tremendous portable applications, and will make people even more interested in buying music.

This latest assault by the recording industry on home taping is contrary to the intent of Congress and to Supreme Court precedent. Congress protected the right to tape during five years of debate. The recording industry's anti-consumers, anti-technological attack should be rejected once again.

HANDHELD DIGITAL IC COMPARATOR/ TESTERS FEATURE 20 CHANNEL LOGIC MONITOR
B\&K-PRECISION's Motel 550 and 552 IC Comparator Tester/Logic Monitors test IC's by comparison to a known good reference in one simple operation. As logic monitors, they simultaneously indicate the logic states of up to 20 IC pins. They test most 14 to 20 pin, 54 and 74 Series TTL (Model 550) or 4000 and 74 C Series CMOS (Morlel 552) devices. Both models are available from distributors at $\$ 395$. Contact your local distributor or: 13\&K-PIRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL, 60635. (312) 889-9087.

LOGIC/PULSER PROBES HELP LOCATE DIGITAL FAULTS IN LAB OR IN FIELD SERVICE
B\&K-PRECISNON now offers logic and pulser probes to fill the needs of engineers and technicians. The DP'-21 is a 20 MHz probe that also displays pulse presence and logic status. Both LED and audible logic slate indicators are featured. 'The DP'-31 pulser probe can be used alone or with a logic probe or scope. It produces a $10 \mu \mathrm{~S}$ pulse at 0.5 or 400 PP'S rates and features an external square wave and synchronizing terminal. Both probes are multi-family compatible. The DP'-21 is $\$ 32$. The DP-31 is $\$ 33$. Contact your local distributor or: B\&K-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL, 60635. (312) 889-9087.

NEW COMPARATOR ADDS IC/COMPONENT TESTING TO SCOPE Test virtually any type of passive or active component or module with B\&K-PRECISION's new 541 Component Comparator. "lhe 541 is designed for use with the 540 component tester or virtually any $x-y$ oscilloscope. It is well suited for both in-circuit and out-of-circuit tests. It's fast and easy to use. Unlike single function testing, the 541 can be used on series, parallel or series/parallel circuits. $\$ 395$. Contact your local distributor or: B\&k-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL, 60635. (312) 889-9087.

NEW COMPONENT TESTER LOCATES FAULTS ON UNPOWERED BOARDS IN FIELD OR PLANT The new Model 540 component tester is an extremely cost effective, highly flexible trouble-shooting aid that can assist in rapidly locating faults on unpowered boards. Faults can be traced to the component level without specific circuit knowledge. Individual components can also be tested. Test results are displayed as a curve on a built-in CRT display. Curve tracing allows matching of components. Two channels allow production testing against known good boards. Ideal for field service or production testing. \$995. Contact your local distributor or: B\&K-PRECISION, Dy nascan Corp., 6460 W. Cortland S_{t}., Chicago, IL 60635. (312) 889-9087.

PROGRAMMABLE IC TESTER TESTS TTL, CMOS, RAM AND ROM IC'S, IN OR OUT-OFCIRCUIT
Called the "first cost-effective way to test IC's both in and out-of-circuit," the new B\&K-PRECISION Model 560 fills the void between basic component testers and costly ATE systems. Over 1500 different 14 to 24 pin devices can be tested, including 'T'IL and CMOS digital IC's, RAMs and ROMs. The 560 speeds testing, simplifies diagnostics and doesn't require prior test skills. Plain-English user prompts guide every step of operation. Test results are displayed as positive "pass" or "lail." Test results can be fed to a printer. Applications include incoming inspection, QC, production line testing and troubleshooting faulty products. $\$ 3,500$. Contact your local distributor or: B\&K-PRECISION, Dynascan Corp., 6460 W. Cortland St., Chicago, IL 60635. (312) 889-9087.

Whether vour needs are for production board testing, incoming inspection or field servize, B\&K-PRECISION has you covered with time saving, accurate cigital test products.

The Model 560 Programmable In/Out-of-circuit IC Tester is the first cost-effective way to rapidly test ICs both in and out-of-circuit. Punch up the number you need from a resident memory of over 1500 TIL, CMOS IC's rAM's and RDM'S.

The Model 540 Component Tester locates fault on unpowered boards. cown to tre component level. Cunse-tracing method also allows fast corrfarison of components or boards.

The Model 541 Component Comparator is a companion instrument for use with your scope or the 540.1-tests IC's, semicond Jctors, capacitors, iriductors, transformers and more.

The Models 550 and 552 IC Comparator Tester/Logic Monitors are hand-hele Fortables for TTL and CMOS applications. In-circuit dynamic tests compare a known-good IC to an on-board IC. $\& 2$-channellogic monitor is blill-in.

The B\&K-PRECISION digital test line-up is rounded out oy convenient anc ezonomical pulser and logic probes.

For immediate delivery or complete specifications and applications irformation, zall your local distributor or B\&K-PRECISICIN.

DYNABCAN CORPORATION 6460 West Cortland St. - Chicago, IL $30635 \cdot 312-889-9087$ Internatione Sales, 6460 W. Cortlane St., Chicago, H. 60635
Canadian Sales, Atlas Eectronics, Ontario
South and Central Amer can Sales, Empire Exportrers. Plainview, NY 11803

VIDEO

 News

DAVID LACHENBRUCH, CONTRIBUTING EDITOR

- Wireless is hot. No, not Marconi's type of wireless, but wireless control and reception devices are big these days. Almost every TV manufacturer has introduced a wireless remote control that will work with the same brand of VCR, audio equipment, or both, and several have developed remote hand-held units that can "learn" other brands by facing them off with other remote units in a sort of bad-day-at-BlackRock situation.

Wireless stuff got hotter at the recent Consumer Electronics Show in Chicago. CL9, the company started by Apple Computer co-founder Steve Wozniak, showed a universal remote control that could be taught whole sequences of commands, to be executed at a single keystroke. The controller, which costs \$199, can perform as many as 260 series of tasks, has 16 keys, and 16K program memory. It can accomplish such tasks as turning on a VCR, setting it to record a specific channel, rewinding the tape and turning the machine off at one keystroke, for example. Coming in the future are computer and telephone interfaces-one of which would make it possible to program a VCR by phone.

Another hot wireless product was a hi-fi stereo speaker system using only house wiring for connection. To be marketed by Recoton for about $\$ 250$ including amplified speakers, it can carry stereo sound to any room of the house via the AC wiring system and is claimed to have Compact Disc fidelity. Future models will be designed to accommodate name-brand speakers. Many years ago, General Electric's "Portasound" wireless AC speakers were all the rage, but they were killed off with the introduction of stereo. Now Recoton has updated Portasound in stereo and hi-fi.

Now you can edit your videotapes without even touching your VCR-by using Videonics' wireless editor. It's a complete editing system with a wireless hand-held alphanumeric keypad which is aimed at a high-speed microcomputer with 256K RAM as its main memory. Two VCR's are required-one of which can be a camcorder. Utilizing on-screen commands and prompts, the system guides the user through the process of editing, making titles, and captioning. More
sophisticated add-ons will become available, but the basic system lists for less than $\$ 500$.

Infrared wireless headphones are coming onto the American scene - none too early. They've been a fixture in Europe for many years. You merely plug the IR transmitter into the headphone jack of the TV or stereo and to a power source.

- Personal video. In its efforts to popularize the 8 mm -Video format, Sony has adopted a new approach. Calling the format "personal video," the company is emphasizing 8 mm 's small size and ability to be built into miniaturized equipment. Two new products introduced by Sony are "the world's smallest" complete VCR with tuner and timer, designed to be easily attached to any TV set and moved from room to room, and a "desk set" combination VCR and 5 -inch color TV. Scheduled for introduction next year is a $2.7^{\prime \prime \prime}-$ LCD color-TV and VCR combination that is about the size of a paperback book. A companion color camera, small enough to fit in a pocket, was also shown.
- Up in the air. A completely new airborne video system is being offered to the airlines. As introduced at the Paris Air Show, each seat has its own individual 4 -inch flat CRT built into the back of the seat in front of it. Passengers have their choice of at least three video programs, can pass the time by playing seven different video games, watch local TV or live closed-circuit TV showing takeoff and landing from the pilot's cabin, listen to one of 18 mono or nine stereo channels of digital audio. They also can use the interactive keypads and screens in front of them to order meals and drinks, purchase duty-free items and get safety instructions in multiple languages. Developed jointly by Sony and Sundstrand Data Control, the Airborne Cabin Service and Entertainment System (ACSES) uses 8 mm videotape for video and audio programs, and is expandable for the addition of further new features. There's no word on when you'll find it on an airplane. Its unveiling was the first indication that Sony had developed a color version of its flat Watchman picture tube.

DESCRAMBLER ARTICLE PARTS

February 1984 Issue

We stock the parts, PC Board and AC Adaptor for an article on building a cable TV descrambler appearing in Radio-Electronics.

\#701 Parts Package*
 $\$ 29.00$

Includes all the original resistors, capacitors, diodes, transistors, integrated circuits, coils,
IF transformers (Toko BKAN-K5552AXX).

\#702 PC Board* $\$ 8.95$

Original etched and drilled silk-screened PC Board used in the article.

> \#704 AC Adaptor \$7.95

Original (14 volts DC @ 285 ma) AC Adaptor used in the article.

FREE reprint with Purchase Above
\#708 Toko Coil Set
\$6.95
Includes (2) BKAN-K5552AXX, (1) E520HN300023, (1) 144LY-120K and BFQ-85 Replacement 2SC2369.

February 1987 Issue

We stock the parts, PC Board and AC Adaptor for an article on a tri-mode cable TV descrambler appearing in Radio-Electronics.
> \#301 Parts Package* $\$ 39.00$
> Includes all the original resistors, capacitors, diodes, potentiometers, transistors, integrated circuits, LED's, Toko coil (E520HN-3000023) and Plessey Saw Filter (SY-323)

\#302 PC Board* \$8.95
Original 5×8.8 etched and drilled silkscreened PC Board used in the article.
\#304 AC Adaptor \$7.95
Original (14 to 18 volt DC @ 200 ma) AC Adaptor used in article.

Free Reprint with Purchase Above \#308 Plessey \& Toko Set \$6.95
Includes (1) Plessey SY323 Saw Filter plus (1) Toko E520HN-300023 Coil.

Add $\$ 2.50$ Shipping \& Handling; \$4.50 Canadian Orders

72-CHANNEL

WITH INFRA-RED REMOTE CONTROL

Add $\$ 3.50$ Shipping and Handling $\$ 4.50$ on Canadian Orders

- 72-channel capability - Parental control for all channels
- Wireless, Infra-Red remote control - Last channel recall
- Channel output 2 or 3 switchable - Fine tune memory
- Microprocessor controlled PLL UL listed/FCC approved operation
- Simple installation with any TV
- Skip channel memory eliminates - Includes battery and 3 foot coax unused channels
cable

ORDER TOLL FREE

 1-800-227-8529Inside MA: 617-695-8699
VISA, MASTERCARD OR C.O.D

Not available to Massachusetts residents due to state law

Pride, quality,

When you unpackage a Heathkit product, you open up a special world, a world providing a unique blend of achievement and fun. With your Heathkit product, you'll enjoy the pride of building it yourself, and the confidence that it's built right. Along with the convenience and assurance of knowing how to keep it running at peak performance. Plus you'll learn about new and emerging technologies. For knowledge that gives you that added edge in your field. But most important, with a Heathkit product you're buying from a company whose name is synonymous with quality and enjoyment. From our easy-to-follow documentation to our renowned technical support, we make sure your kitbuilding experience is fun and relaxing - as well as rewarding. . And when you're done, your pride will be matched by the

fun...Heathkit

Enter the Heathkit world with...

The Heathkit ID-4001

 Weather Computer, which puts weather information at your fingertips. With the press of a button, you can instantly know temperature, wind speed and direction, and barometric pressure for the exact location in which you live. For planning outdoor activities with greater assurance than ever.And its all done with unsurpassed accuracy. Long life IR LED's act as sensors to make both the wind speed cups and the wind direction vane as sensitive and as accurate as a costly laboratory instrument. While active solid state devices reliably measure indoor and outdoor temperatures, all stored by a microprocessor for later recall.

Attractively designed, the ID-4001 will give you extraordinary performance unheard of at such a reasonable price, $\$ 399.95$.

The IC-1001 Logic

Analyzer is the perfect answer for transforming a PC-compatible computer or standard terminal into a versatile logic analyzer.

A top-grade troubleshooter and design aid, the compact Logic Analyzer includes 16 data lines plus clock and two qualifier lines, checksum capability, and state and timing displays with hex, octal and ASCII equivalents. You can even use it in circuits with clock speeds up to 10 MHz , trigger on any digital word and view events 2,000 pulses before trigger and up to 50,000 pulses after. High impedance inputs virtually eliminate circuit loading.

And it's casy to use! The highly intuitive userfriendly software makes the IC-1001 fully keyboardconfigurable and menu-driven. All in one portable unit.

Put this most advanced technology to work for you - for only $\$ \mathbf{2 6 9 . 0 0}$.

To order, call toll-free 1-800-253-0570. Ask for Operator 310.
We also have 66 Heath/Zenith Computers \& Electronics stores in North America. Call 616-982-3614 for the store location nearest you.

Heathkit

Ask R-E

WRITE TO:

LETTERS

Radio-Electronics
$500-\mathrm{B} \mathrm{Bi}$-County Blvd.
Farmingdale, NY 11735

MORE ON MOTORS

In selecting questions for this column, we try to choose those that will interest the greatest number of readers and provide what we feel is the most practical answer when there may be two or more possible solutions to a problem. At times we consult professionals and experts before preparing a reply; but, unfortunately, the expertise of experts and professionals is often governed by their experience and familiarity with the question, and recently we got some "not-so-expert" opinions. So...we apologize for the less-than-expert replies to a couple of inquiries and will now try and set the record straight.

In an early inquiry on reversing electric motors, we pointed out that there are many types of motors and suggested that the reader take the motor to a motor repair shop and have a technician
install a reversing switch. In a fol-low-up on the question (See "Ask R-E" in the April 1987 issue), we mentioned the possibility of reversing a motor by shifting the pole and field coil assemblies to the opposite sides of the brushholder center-line.

Reader Edward T. Smith, of Brogue, PA adds that a simpler and more practical solution is to switch the leads connected to the brush holders. Interchanging those leads reverses the current through the armature, so the torque and the direction of rotation are also reversed.

Now for what we hope will be the final word on the subject of reversing motors:

Single-phase, split-phase motors have a main winding fed directly from the AC powerline and an auxiliary winding that is fed a current that is out of phase with that in the main winding. The two

FIG. 1
windings may be electrically equal. In this case, the phase shift is generally produced by an inductor or a capacitor in series with the auxiliary winding. The usual sin-gle-phase, split-phase motor can be reversed by reversing the connections to either the auxiliary winding or the main stator winding.

In the single-phase capacitor motor (Fig. 1-a), the main and auxiliary windings are electrically similar. One winding is fed directly from the AC powerline and the other is fed through the capacitor. The position of the switch selects between the forward and reverse directions of rotation by switching the series capacitor from one winding to the other.

In some split-phase motors, the "start" winding has many turns of fine gauge wire; the "run" winding has fewer turns of a much heavier gauge wire. The phase difference in the magnetic fields causes the armature to rotate. The motor easily is reversed by reversing the connections to one of the windings.

In the capacitor-start motor (Fig. 1-b), the main or "run" winding is directly across the AC powerline and the auxiliary or "start" winding is fed through a capacitor and centrifugal switch that opens when the motor comes up to speed. For forward rotation, the start winding, switch, and the capacitor are in a series string from the midpoint of the main wind ing to one side of the powerline. For reverse operation, the switch returns the startwinding assembly to the other side of the powerline.

The shaded-pole induction motor (Fig. 1-c) is usually a lowtorque low-speed type used for

Crystek Crystals

QUARTZ CRYSTALS FOR
\square Industrial Equlpment/Insirumentation
Micro-processor control
Computers/Modems
Test/Measurement *Medical
General Communicatlons

* Channel element Service (VHF/UHF)
* Land Mobile 2-way
* Marine

Aircraft

- Telemetry

Monitors/Scanners/Pagers
\square Amateurs/2-Meter/General Coverage CB/Hobblest/ExperImenter

FOR OPTIMUM STABILITY AND RELIABILITY IN FREQUENCY MANAGEMENT

Crystek Crystals offers their new 16 page FREE catalog of crystals an oscillators. Offering state of the art crystal components manufactuered by the latest automated technology. Custom designed or "off the shelf," Crystek meets the need, worldwide. Write or call today!

Test VCR Mechanics Fast and Dasy!

Take the guesswork and hassles out of VCR mechanical problem diagnosis!
Four Universal, Powerful Tools for VCR Service

Spindle/Elevator Gauge: The TSH gauge inserts into the VCR just like a cassette. The new TSH-V5 performs 6 critical measurements to eliminate tape binding and edge damage. This gaugequickly locates problems that can't even be detected by other methods. Fully illustrated instruction manual is included.
TSH-V5 for VHS: \$395

Tentel ${ }^{6}$ provides the most powerful, easy-to-use, field calibrateable, universal VCR test equipment available for various mechanical tests. Call our application engineers today for answers to your questions. Ask about the combination discount when ordering all $\mathbf{4}$ gauges.
Tentel ${ }^{\text {C }}$ Corp.
(800) 538-6894

Campbell, CA 95008
(408) 379-1881

Torque Gauge: A universal, inexpensive, accurate torque gauge for VHS and Beta VCRs. Calibrated in Gram-Centimeters both clockwise and counterclockwise. Complete with easy-to-follow, detailed instruction manual for VHS recorders. Includes a modified VHS cassette for ease-of-use.
Complete System TQ-600 \$139

pumps and fans. Power generally ranges from around $1 / 3$ to $1 / 30$ horsepower. It has copper bands short-circuiting or "shading" a portion of each pole face. The magnetic flux "peaks" first in the unshaded portion, then it peaks in the shaded portion; the electrical effect being a rotation from the unshaded to the shaded pole piece. The motion of the rotor follows the rotating field.

Reversing a shaded-pole motor is generally a mechanical operation. Rotate the wound stator-coil assembly 180° in the case or turn it end-for-end with respect to the rotor. Special types of shaded-pole motors have been designed so as to be electrically reversible; they can usually be identified by instructions on a plate affixed to the motor's case

The basic repulsion-induction motor (Fig. 1- d) has a slotted armature with windings connected to a commutator. The brushes are connected together and the armature is excited by pulsating currents in the stator winding. That type of motor is reversed by rotating the set of brushes through a small angle around the armature centerline. The brush positions for forward and reverse directions of rotation may be marked on the motor's frame; another technique might be to limit the brush positions using stops.

RHOMBIC ANTENNA IMPEDANCE

In the "Ask R-E" column of August 1986 you supplied information for a matching section for the 600 -ohm impedance of a VHF rhombic antenna. Now, the article "Rhomboids for TV reception" (May 1957, page 86) gives the impedance of a rhombic antenna as $\mathbf{8 0 0}$ ohms. That figure is also given in the The ARRL Antenna Book. Why the discrepancy?H.L.E., Cedar Rapids, IA.

A number of factors enter into the design of a rhombic antenna: tilt angle, antenna height, and the length of each leg. The maximum output design gives maximum radiation of signals in a desired direction and maximum response to signals arriving from that direction. Other designs are used to meet special conditions where
height, leg length, or tilt angle may be dictated by local conditions. Of course, all variations in design can have an effect on the antenna's input impedance.

When a conventional singlewire rhombic is used over a $3: 1$ frequency range, its input impedance ranges from a maximum of about 830 ohms to a minimum of 700 ohms. When used over a frequency range of $4: 1$, the input impedance drops to a minimum of 580 ohms. In some authoritative references, we find:
"The transmission line can sometimes be designed to have a characteristic impedance the same as...the (rhombic) antenna input resistance, or vice versa in some cases. A 600 -ohm two-wire balanced feeder gives a line of reasonable cross-section, but becomes less reasonable for higher (line) impedances. For this reason, rhombic antenna and feeder are designed for a value of 600 ohms for a majority of applica-tions."-lasik's Antenna Engineering Handbook
"If the broad frequency characteristics of the rhombic antenna are to be fully utilized, the feeder system used with it must be similarly broad. This practically dictates the use of a transmission line of the same characteristic impedance as that shown at the antenna input terminals, or approximately $750-800$ ohms. The spacing required for an 800 -ohm line is rather awkward, also, rather small wire must be used. Both these considerations are disadvantageous mechanically, and the radiation from the line tends to be comparatively high at frequencies, because of the wide spacing. On the whole, the best plan is to connect a 600 -ohm line directly to the antenna and accept the small mismatch which results."-Antennas and Antenna Systems, War Department Technical Manual TM 11-314.
"A 600 -ohm line connected to the antenna feedpoint is perhaps the most convenient means of feeding the antenna."-Antenna Systems, Air Force Manual 52-19.
One thing that is often overlooked is that at frequencies where the rhombic's input impedance is 800 ohms and the feedline impedance is 600 ohms, the stand-ing-wave ratio is a low 1.33 to 1 , and the line loss compared to a perfect match will be negligible.

R-E

HITACHI SCOPES AT DISCOUNT PRICES!

20MHZ

100MHZ

Model V212 $\$ 475$
Model V- 212 20MHZ Dual Channel (1mV Sens.) $\$ 475$ Model V-422 40MHZ Dual Channel (1mV Sens.) $\$ 699$ Model V-425 40MHZ Dual Channel (with cursor) $\$ 795$ Model V-660 60MHZ Dual Channel (Delayed Sweep) $\$ 990$ Model V-1060100MHZ Dual Channel (Delayed Sweep) $\$ 1,340$ All above scopes have a 3 year guaranty on parts and labor

> 15-25\% OFF LIST PRICE

ELENCO PRODUCTS AT DISCOUNT PRICES!

20 MHz DUAL TRACE OSCILLOSCOPE \$359 мо. 1251

35 MHz DUAL TRACE OSCILLOSCOPE

Tup quality scopes at a very reasonable price. Contains all the desired features. Elenco's 2 year guarantee assures you of continuous service. Two $1 \times, 10 \times$ probes, diagrams and manual included. Write for specs. 100 MHz Test Probes, $1 \mathrm{X}, 10 \mathrm{X}$, Ref. (Complete with 5 accessories) Fits Most Scopes $-\$ 22$

Fully regulated, short circuit protected current limit control
XP-850 with Analog Meters $\mathbf{\$ 1 2 9 . 5 0}$

MULTI-FUNCTION COUNTERS

Frequency, Period, Totalize, Self Check with HighStabilized Crystal Oven Oscillator, 8 Digit LED Display

C\&S SALES INC., 8744 W. North Ter., Niles, IL 60648 DAY MONEY 800-292-7711 (312) 459.9040 ASK FOR CATALOG BACK GUARANTEE

[^1] CIRCLE 109 ON FREE INFORMATION CARD

THE COMPACT SERIES ${ }^{\text {w }}$

Light weight-just 13 pounds! Light price-4 models from $\$ 1095$ Great smarts- 60 MHz and 100 MHz featuring Hitachi's unique Trigger Lock, Auto Sweep, Cursor Measurement, and more. Full size screen-Crisp 6 -inch $(8 \times 10 \mathrm{~cm})$ CRT. Hitachi reliability-all carry our standard three-year warranty.
Get more information and more scope for your money from Hitachi. Call: NY area 516-921-7200. LA area 213-538-4880 • Dallas area 214-233-7623.

HITACHI COMPACT SERIES:	$\mathrm{V}-1065$	$\mathrm{~V}-1060$	$\mathrm{~V}-665$	$\mathrm{~V}-660$
Bandwidth	100 MHz	100 MHz	60 MHz	60 MHz
Accelerating potential	17 KV	17 KV	12 KV	12 KV
CRT readout	\checkmark	\checkmark	\checkmark	\checkmark
Cursor	\checkmark		\checkmark	
Auto range of sweep time	\checkmark		\checkmark	
Trigger lock			\checkmark	\checkmark
Peak-to-peak auto trigger			\checkmark	\checkmark
Trigger signal output	\checkmark		\checkmark	
Three year warranty			\checkmark	
Price	$\$ 1795$	$\$ 1495$	$\$ 1395$	$\$ 1095$
Weight/Dimensions	$13 \mathrm{lbs} . / 10.8^{\prime \prime} \mathrm{W} \times 5.1^{\prime \prime} \times 14.2^{\prime \prime} \mathrm{D}$			
CRT Size	$8 \times 10 \mathrm{~cm}$			

LETTERS

LETTERS
SOO-B BI-COUNTY BOULE VARD
FARMINGOALENY NYIJS

SCA ERRORS

In the article, "Build This SCA Receiver," in the August 1987 issue of Radio-Electronics, the Parts List has R42 at 22 K and R37 and R38 at 10 K . The schematic has R42 at 4.7 K and doesn't show R37 and R38 at all. They appear to be in series with pin 13 of IC1. The Parts List also says that C27 is not used, while the schematic shows that it is in the line between Q2 and Q6.
G. L. McDONALD

Auburn, WA
Resistors R37 and R38 are 10 K units; as you surmised, those are the unmarked resistors at pin 13 of IC1. Resistor R42 is 4.7 K , as shown in the schematic; the Parts List is incorrect. Also, capacitor C27 is a $0.01-\mu F$ ceramic disc as shown in the schematic.
In addition, a ground symbol is missing in the schematic; it should be added at the junction of R23, R25, and C21.
Finally, if you have trouble finding the National LM3189N used for IC1, an RCA CA3189E or CA3089E can be used in its place; the latter one should be the easiest to find. -Rudolf Graf and William Sheets

MORE ON SCA

I enjoyed "Build this SCA Receiver"in the August 1987 issue very much. I want to use the unit to receive data for input into my computer, as mentioned on page 41. Some of those transmissions are at 19.2 kilobaud, so the SCA audio bandwidth must be high enough to not distort the transmission waveform.

The article states,"SCA is not a high fidelity service; its audio-response bandwidth is limited to about 5000 Hz ." Is that an FCC lim-
itation, or an arbitrary one to eliminate noise? I'm concerned that the 12 -dB-per-octave low-pass filter on the output of the LM565 (R56/C45-R57/C46) will cause waveform distortion of any digital-data transmission.

If there is an FCC restriction, the bandwidth will be limited at the transmitter, and I don't have to worry. I do want to receive the signal exactly as transmitted however.

What is the FCC bandwidth restriction on SCA transmissions? And what component value changes, if any, are necessary to receive digital-data exactly as transmitted, without waveform distortion caused by a restricted bandwidth?

I believe the authors were wrong in their statement: "The signals are FM with $\pm 7.5 \mathrm{kHz}$ deviation maximum." According to the FCC's December 1984 amendment, section 73.319 (d) (2), for stereo FM plus an SCA and nothing else (the most common SCA situation) the following applies:
"During stereophonic program transmissions, modulation of the carrier by the arithmetic sum of all subcarriers may not exceed 20% referenced to 75 kHz modulation deviation..."

The maximum used to be 10% (7.7 kHz) but now it's 20 percent (15 kHz)-and 30 percent for monaural and SCA-only transmissions. That error brings up a possible design error in the SCA receiver's circuit. If the designer's thought the maximum allowable deviation was noticeably less than what actually might be encountered, might the circuit distort more than it was designed for when it gets a true max-

PROTLET YOUR GOMPUTER AND SAVE

SURGE PROTECTOR

Safeguard Sensitive Equipment and Valuable Data with this Surge Protector and Power Sequencer. A closeout makes the LOW liquidation price possible!

- Guards Your Valuable Computer Hardware and Audio System from Power Surges and Voltage Spikes.
- Two-Stage Protection. (Diodes, MOVs.)
- Fast-Response Components Capable of 5 Pico Seconds (5 Trillionths of a Sec.),
Electrical Storms, Faulty Wiring, and Power Line Switching can be disastrous to sensitive computer circuitry. No microcomputer can withstand a major surge without considerable damage. You have invested time and money in your computer system and its programming. The important data you have entered could be lost in seconds without surge protection. Power surges and spikes can also cause failure or slow deterioration of audio equipment. This 1200 W surge protector provides surge protection and sequencing of outlets for power up. The $2334^{\prime \prime} \mathrm{H} \times 33 / 4^{\prime \prime} \mathrm{W} \times 7^{\prime \prime} \mathrm{D}$ housing has four outlets, LED power indicator light, reset, and on/off switches. Heavy-gauge 6^{\prime} cord.
2-Yr. Ltd. Warranty on Parts and Labor.
Mfr. List Price
$\$ 119.95$

Liquidation
Price.

lem H -2821-7121-734 S/H: $\$ 4.00$ each
Credit card customers can order by
phone, 24 hours a day, 7 days a week
Toll-Free: 1-800-328-0609
Sales outside the 48 contiguous states are subject to special conditions. Please call or write to inquire.

SEND TO:

Colme Direct Marketing Corp.
1405 Xenium Lane N/Minneapolis, MN 55441.4494
Send_Surge Protector(s) Item H-2821-7121-734 at \$39 each, plus \$4 each for ship, handling. (Minnesota residents add 6% sales tax. Sorry, no C.O.D. orders.)
My check or money order is enclose
processing orders paid by check.)

"If youre going to learn electronics, you might as well learn it right!"

You've probably scen advertisements from other electronic schools. Maybe you think they're all the same. They're not! $\dot{C I E}$ is the largest independent home study school in the world that specializes exclusively in electronics.

Meet the Electronics Specialists.

When you pick an electronics school, you're getting ready to invest some time and money. And your whole future depends on the education you get in return.

That's why it makes so much sense to go with number one ... with the specialists with CIE!

Pick the pace that's right for you.

CIE understands people need to learn at their own pace. There's no pressure to keep up . . no slow learners hold you back. If you're a beginner, you start with the basics. If you already know some electronics, you move ahead to your own level.

Enjoy the promptness of CIE's "same day" grading cycle.

When we receive your lesson before noon Monday through Saturday, we grade it and mail it back the same day. You find out quickly how well you're doing!

CIE offers you an Associate Degree.

One of the best credentials you can have in electronics - or any other career field - is a college degree. That's why CIE gives you the opportunity to earn an Associate in Applied Science in Electronics Engincering Technology. Any CIE career course can offer you credit toward the degree more than half of the number needed in some cases.
"Cleveland Institutc of Electronics is the only accredited institution of higher learning offering an Associatc Degree program with tuition based on actual study time used. The faster you complete your degrec assignments, the less your overall tuition." Steve Simcic Vice-President Academic Affairs

There's no such thing as bargain education.

If you talk with some of our graduates, chances are you'd find a lot of them shopped around for their training. Not for the lowest priced but for the best. They pretty much knew what was available when they picked CIE as number one.

We don't promise you the moon. We do promise you a proven way to build valuable carcer skills. The CIE faculty and staff are dedicated to that. When you graduate, your diploma shows employers you know what you're about. Today, it's pretty hard to put a price on that.

Because we're specialists we have to stay ahead.

At CIE, we'se got a position of leadership to maintain. Here are some of the ways we hang onto it

Programmed Learning

That's exacily what happens with CIE's Auto-Programmed Lessons. Each lesson uses famous "programmed learning" methods to teach you important principles. You explore them, master them completely, before you stant to apply them. You thoroughly understand each step before you go on to the next. You learn at your own pace.

And, beyond theory, some courses come fully equipped with electronics gear (the things you see in technical magazines) to actually let you perform hundreds of "hands-on" experiments.

Experienced specialists work closely with you.

Even though you study at home, you are not alone! Each time you return a completed lesson, you can be sure it will be reviewed, graded, and returned with appropriate instructional help. When you need additional individual help, you get it fast and in writing from the faculty technical specialist best qualified to answer vour question in terms you can undersiand.

Which CIE Training fits you? Beginner? Intermediate? Advanced? CIE home study courses are designed for ambitious people at all entry levels. Pcople who may have:

1. No previous electronics knowledge, but do have an interest in it;
2. Some basic knowledge or experience in electronics;
3. In-depth working experience or prior training in electronics.
You can start where you fit and fit where you start, then go on from there to your Diploma, Associate Degree, and carcer

State-of-the-art Laboratory Equipment

Some courses feature the CIE Microprocessor Training I aboratory. An integral part of computers, microprocessor technology is used in many phases of business, including service and manntacturing industries.

The MITL gives you the opportunity to program it and interface it with LED displays, memory devices, and switches. You'll gain all the practical experience needed to work with state-of-the-art equipment of today and tomorrow.

Today is the day.
 Send now.

Fill in and return the postage-free card attached. If some ambitious person has removed it, cut out and mail the coupon. You'll get a FREE school catatog plus complete information on independent home study. For your convenience, we'll try to have a CIE representative contact you to answer any questions you may have.

Mail in the coupon below or, if you prefer, call toll-free 1-800-321-2155 (in Ohio, 1-800-523-9109).

CPIE
 Cleveland Institute of Electronics, Inc.
 1775 East 17th Street, Cleveland, Ohio 44114
 Accredited Member National Home Study Council

YES. .I wann to learn from the specialists in electronics - CIE. Send me my FREE CIE school catalog...including details about the Associate Degree program... plus my FREE pachage of home study intormation.
Print Name
Address

```
                                    Apt
```

City __ State ___ Zip ___

Age Area Code/Phone No.
Check bov for G.I. Bill bulletin on Educational Benefits: \square Veteran \square Active Duty MAIL TODAY!
imum signal? The output of LM565 and 2 N 3565 are the two possible overload points. What deviation was the circuit designed for, and what component changes are necessary for the true maximum possible SCA signal levels? Also, do you know where I could get a list of stations with SCA digital data transmissions?
I look forward to using the SCA receiver.
PETER SKYE
Glendale, CA
We were not aware of the change in the FCC rule when we wrote the article. Our object was to receive SCA music and speech transmission. The 565 PLL will lock and follow any signal up to $\pm 60 \%$ of the design frequency depending on external components. We refer you to National Semiconductor's LM565 data sheets for more details.

The circuit was designed to handle the $\pm 10 \%$ deviation (7.5 kHz). It does better than that on the bench, but we can not guarantee
that you, too, will receive better performance.

If you find that the lowpass filter distorts the waveform, you can try removing it. However, you may find that that results in unacceptable noise levels. In that event, try experimenting with smaller levels of filtering.-Rudolf Graf and William Sheets

COMPUTER FLEA MARKET

There will be 80 sellers of hardware, software, printers, disk drives, supplies, books, and more at the Computer \& Hi-Tech Flea Market on Saturday, November 21, 1987. It will be held at the Veterans Memorial Building, 4117 Overland Avenue, Culver City, CA from 10 AM to 5 PM. There will be ample free parking, and the admission charge is $\$ 2.00$.

For those wishing to set up and sell at the fair, information can be obtained by calling (213) 276-1577. MICHAEL J. FLAHERTY 303 North La Peer Drive Beverly Hills, CA 90211

R-E ROBOT

I was disappointed to see that Clifford King was not credited as the co-author of the article on the RCL Robot Command Language ("R-E Robot," August 1987). Mr. King designed and wrote the RCL, then wrote the article describing it. I offered only general guidance in terms of the purpose of the program and the overall direction of the article. Without Cliff King's consulting group's-Micro-K Sys-tems-offer of software support at the inception of the robut project, I doubt if I would have started the project at all.

As you know, it's not the hardware that is the bottleneck in the design and utilization of robots. It is the software. The RCL that Micro-K developed took over 4 man-months of solid effort and the results are outstanding.

Thank you for correcting the oversight and printing this information.
STEVEN E. SARNS Vesta Technology Inc. continued on page 25

Manufacturers Scope	Original Probe	Price	Coline/TP\| Equivalent	Price	Manufacturers Scope	Original Probe	Price	Coline/TPI Equivalent	Price
TEKTRONIX 2300 Series	P6101A				PHILIPS	PM8294	\$60	M12X1	\$38
		\$53	M12X1	\$38	PM3267				
	P6108A	\$75	M12×10	\$62	\&				
2200 Series	$\begin{aligned} & \text { P6121 } \\ & \text { P6122 } \end{aligned}$	\$100	M12X10AP	\$68	PM3256	PM8926	\$70	P100	\$38
		\$58	P100	\$38	PM3264	PM8928	\$95	M12X10	\$62
2400 Series		\$140	M15 20 HFAP	\$87	HITACHI				
	$\begin{aligned} & \text { P6131 } \\ & \text { P6133 } \end{aligned}$	\$115	M12X10AP	\$68		AT-10AL1.5	\$64	SP100	\$43
400 Series	P6105A	\$93	M12X10AP	\$68	V-1100A				
	$\begin{aligned} & \text { P6106A } \\ & \text { P6130 } \end{aligned}$	\$140	M15X10HFF.P	\$87	V-670				
		\$130	M12X10AP	\$68	V-509				
IWATSU									\$68
SS.5321	$\begin{aligned} & \text { SS-0014 } \\ & \text { SS-0012 } \end{aligned}$	\$92	M12 $\times 10$	\$62	HEWLETT PACKARD		\$135	M20×10	
SS-5711		\$77	M12×10	\$62	1722B	10017 A	\$130	M15 $\times 10 \mathrm{HF}$	\$79
LEADER	$\begin{aligned} & \text { LP-060X } \\ & \text { LP-100X } \end{aligned}$	\$60	SP100	\$43	$\begin{aligned} & 1725 A \\ & 1740 \text { Series } \end{aligned}$	10017A	\$130	M15 $\times 10 \mathrm{HF}$	\$79
LB0-315						10041A	\$135	P100	\$38
LB0-518		\$76	SP100	\$43		10021A	\$85	\|P20	\$29

Take up the Coline TPI challenge and compare our prices with the probes you currently use. In many cases you can replace both probes on your dual trace scope ait the cost of one probe from the scope manufacturer. Plus, bandwidth and overall performance of the TP! probe typically exceed that of the original equipment. Satisfaction is guaranteed with a ten day return privilege. Coline TPI - Specialists in probes for over 15 years.

Available from your local distributor.
 TOLL FREE INFORMATION LINE 1-800-368-5719, 1-800-643-8382 in California

 二a
 TEST PROEESTNC.

Equipment Reports

Mondo-Tronics Space Wings Robotics Kit

New wing-flapping technology

CIRCLE 25 ON FREE INFORMATION CARD

ROBOTICS IS ADIFHICUITHOBBYTOGH started in because it requires a knowledge of so many disciplines ranging from electronics to mechanics. Beginners to the hobby
are often discouraged because building even a simple moving robot can be a complex project We recently found, however, what might be the world's simplest
robot project-Space Wings from Mondo-Tronics (20090 Rodrigues Avenue \#I, Cupertino, CA 95014).

Calling Space Wings a robotics project might be stretching the truth a little bit. Usually we would consider a pair of wings that llap a dozen limes or so per minute more of a novelty item than a robot. But this kit is worth mentioning because of its use of BioMetal wire

Shape-memory alloys
BioMetal wire is an alloy of titanium and nickel that contracts when an electrical current passes through it. In some ways, it is very much like a human muscle. We have seen demonstrations of robolic arms using BioMtetal wire,

Rely on JAN for 3-WAY Help

1. TECHNICALLY CORRECT Crystals to Your Specs
2. QUICK TURNAROUND with huge inventory, prompt service and Emergency Order Plan
3. LOW PRICES

QUARTZ CRYSTALS FOR

Two-Way - Industry - Marine Amateurs - CB - Microprocessor Scanners

For Free Catalog
 Call or Write

JAN CRYSTALS P.O. Box 06017

Ft. Myers, FL 33906 (813) 936-2397

CALL 1-800-237-3063 FREE (Except Florida)

Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation No residence schooling required for qualified Electronic Technucians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World Established Over 40 Years! Write for free Descriptive Literature.
COOK'S INSTITUTE
(8) $\frac{3}{5}$ P.O. BOX 20345
P.O.8OX 20345
JACKSON, MISSISSIPPI 39209
whose movements seem eerily human-like. The nickel-titanium alloy of which BioMetal is made is known as a shape-memory alloy. Such alloys undergo a reversible change in their crystal structure at certain temperatures.

BioMetal is different from other, similar alloys in that it has a more uniform crystal structure. That helps to make its behavior more consistent and predictable and makes its usable lifetime much longer. More important, the uniform structure makes electrical heating of the wire practical because "hot spots" don't develop. For more information on BioMetal, contact its manufacturer, Toki America Technologies, Inc. (18662 MacArthur Boulevard, Suite 200, I rvine, CA 92715).

Building the kit

Space Wings uses BioMetal wire to move a pair of Mylar wings. A 555-timer circuit controls the current through the wire. Each time current flows, the wire contracts and pulls down the " V " where the wings meet. The kit is very easy to build. After all, the entire circuit consists of the 555 timer IC, two resistors, a capacitor, a transistor, some hardware, and, of course, the BioMctal wire. The simplicity, however is a disadvantage in this case. The instructions recommend the use of a 3 -volt, $200-\mathrm{mA}$ transformer that is available at Radio Shack, and notes that "higher current outputs can adversely affect the performance" of the kit "and reduce its operating lifetime." We think it would have made sense to include current limiting on the board

In conclusion, Space Wings makes an interesting conversation piece. It also gives you a chance to play with shape-memory alloy wire. Since education is its only real practical use, we feel the company should have done a better job at it. All that is included on the properties of the wire--the most exciting part of the kit-is a list of specifications that are not explained. Also, although the building instructions are clear and concise, there is no circuit explanation. That's inexcusable. Despite those complaints, we still liked Space Wings, and its $\$ 19.95$ price. R-E

Call 1-800-843-3338 today to start thoroughly analyzing and pinpointing any trouble in any TV-RF distribution system, automatically to FCC specifications

FS74 CHANNELIZER SR. ${ }^{\text {TM }}$ TV-RF Signal Analyzer Patents Pending $\$ 3495$

Abstract

Does your success in servicing RF distribution systems depend on locating problems quickly and accurately? If so, here's why your all new Sencore FS74 CHANNELIZER SR , will mean success for you.

Quickly tune in all TV/FM channels from 5 MHz to 890 MHz . Exclusive all channel, microprocessor-controlled digital tuner checks every standard and cable channel with better than FCC accuracy to fully analyze any system.
Exclusive 5 microvolt sensitivity to bring in even weak signals. Autoranged attenuator automatically selects the best sensitivity for simplifying your VHF, UHF, or FM signal measurements like never before possible.
Automatic hassle-free \mathbf{S} / \mathbf{N} ratio, \mathbf{A} / V ratio, and hum level tests. Exclusive onchannel signal-to-noise ratio test eliminates time-consuming signal comparison and chart reading. Exclusive audio-to-video ratio test measures directly in dB for easy comparison to specifications.

Exclusive checks for ghosts, co-channel interference, line reflections, and other signal quality checks. Portable 4 MHz wideband battery-operated monitor lets you finally check the quality of your cable or MATV system and stop annoying callbacks.
Built-in autoranging AC/DC volt/ohmmeter makes troubleshooting a snap. Exclusive all-weather design holds tighter than FCC specifications from $-4^{\circ} \mathrm{F}$ to $+104^{\circ} \mathrm{F}$. Truly portable, field-tested tough for dependable ease of use.
Begin successfully locating TV-RF signal problems more quickly and accurately than ever before possible, with the new FS74 CHANNELIZER SR. Call WATS Free 1-800-843-3338 today for a free Product Guide or an industry exclusive "Try before you buy" 15 Day Self Demo.

[^2]

WATS Free 1-800-843-3338 In Canada WATS Free 1-800-851-8866

Means Success In Electronic Servicing
3200 Sencore Drive, Sioux Falls, South Dakota 57107
Call Collect 605-339-0100 In SD \& AK

Some are famous for missing parts, others for replacing them.

Over the past few years we've made quite a name for ourselves in the electronics industry. Teehnicians worldwide know that the NTE diamond stands for the highest quality in replacement components.

To distributors. were known for responsive service. eustomer satisfaction and a broad product

line that includes flameproof resistors. capacitors and static control products.
With this hind of reputation for quality and serviee, it's no wonder NTE has become the fastest growing supplier of replacement components in the eleetronies industry!
See for yourself why NTE is famous for replacement parts. Our Technical Guide and Cross Reference lists more than 3.40) NTE devices eross-referenced to over 228.000 industry part numbers.
To obtain your copy see your local NTE distributor. For their name and location just eall us Toll Free.

NTE Electronics, Inc.
44 Farrand Street. Bloomfield. New Jersey 07003

LETTERS

continued from page 20

CAR RADIOS

I finished building the converter described in "New Life for Old Car Radios" (Radio-Electronics, June 1987), but found it lacking. However, I noted great improvement after I tied the bottom of L2/ C1 to ground and eliminated C3. There's no cost in giving that a try, especially if you are using a variable capacitor (C1) that has the rotor connected to the chassis after mounting.

Thanks for a great magazine and projects such as that one. They're greatly appreciated.
I. GRISWOLD

Douglas, AZ

FLIP-FLOPS

I enjoyed your article, "Working with Flip-Flops," in the June 1987 issue of Radio-Electronics. I am a graduate of a technical school (digital and microprocessor technician), and have accumulated a good selection of books on digital electronics. I found that article to be the most comprehensive treatment of the topic that I have seen, and very enlightening. I'm sure there are many other Radio-Electronics readers who have had very intensive courses in electronics, or who are making the transition from analog to digital, who find areas in their understanding of the basics a bit sketchy.

May I offer a suggestion? I would like to see Ray Marston do an article, or a series of articles, on switching techniques used in digital circuits. He might start with the use of pull-up and pull-down resistors and continue with transistor push-pull configurations and three-state devices to explain how highs, lows, and pulses may be applied in digital circuitry. It could be accompanied by schematics of typical circuitry currently used, for example, in microprocessor applications.

Thank you for the fine articles I receive each month; Radio-Electronics continues to be the biggest bargain in my bookcase.
ED JOHNS
West Topsham, VT
R-E
faster, more accurately, and more confidently - every time or your money back

If you value your precious time, you will really want to check out what the exclusively patented SC61 Waveform Analyzer can do for you. 10 times faster, 10 times more accurate, with zero chance of error.
End frustrating fiddling with confusing controls. Exclusive ultra solid ECL balanced noise cancelling sync amplifiers, simplified controls, and bright blue dual trace CRT help you measure signals to 100 MHz easier than ever.
Accurately and confidently measure waveforms from a tiny 5 mV all the way to a whopping $3,000 \mathrm{~V}$ without hesitation with patented 3,000 VPP input protection - eliminates expensive "front end" repairs and costly equipment downtime.
Make only one circuit connection and push one button for each circuit parameter test: You can instantly read out DC volts, peak-to-peak volts and frequency 100% automatically with digital speed and accuracy. It's a real troubleshooting confidence builder.
Confidently analyze complex waveforms fast and easily. Exclusive Delta measurements let you intensify any waveform portion. Analyze glitches, interference signals, rise or fall times or voltage equivalents between levels; direct in frequency or microseconds.
Speed your digital logic circuit testing. Analyzing troublesome divide and multiply stages is quicker and error free - no time-consuming graticule counting or calculations. Simply connect one test lead to any test point. push a button, for test of your choice, for ERROR FREE results.
To see what the SC61 can do for your troubleshooting personal productivity and analyzing confidence, CALL TODAY, WATS FREE, 1-800-843-3338, for a FREE 15 day Self Demo.

[^3]

New

 PRODUCTS

 PRODUCTS}

40 CHANNEL CB

For Help/Info On-The-Road

Breaker! Breaker! A closeout from Fuzzbuster ${ }^{\circledR}$ means BIG savings on a Z-80 40 Channel CB Radio. Now get weather and road data. Know where traffic delays are. Signal for help in an emergency or breakdown as you drive.

- Noise Blanker Screens Out Ignition Static/Interference.
- Automatic Noise Limifing Reduces Annoying Static That Often Comes with a Received Signal.
- Channel Up/Down Buttons with Convenient LED Readout.
- Separate Channel 9 Emergency Switch.
- Illuminated Power Meter. 6 LED Segments Glow Green, to Yellow, to Red to Show Signal Strength Activity.
- Public Address Feature. Speaker Jack.
- Sensitive Squelch Control. Microphone with 18 " Coiled Cord
- CB Fits Under Almost Any Dash. HeavyDuty Mounting Bracket Incl. FCC Reg.
- Metal Case: $23 / 8^{\prime \prime} H \times 71 / 4^{\prime \prime} W \times 71 / 4^{\prime \prime} D$.

Limited Factory Warranty:

1 -Year Parts; 90-Days Labor.
 Item H-2822-7215-825 S/H: \$5.00 ea.

Toll-Free: 1-800-328-0609
Sales outside the 48 contiguous states are subject to special conditions. Please call or write to inquire

SEND TO:
Item H-2822
COMD Direct Marketing Corp.
1405 Xenium Lane N/Minneapolis, MN 55441-4494
Send_Fuzzbuster* CB Radio(s) Item H-2822-7215-825 at $\$ 79$ each, plus $\$ 5$ each for ship, handling. (Minnesota residents add 6% sales tax. Sorry. no C.O.D. orders.)
\square My check or money order is enclosed (No delays in processing orders paid by check.)

PLEASE PRINT CLEARLY

Name
Address
Apt.
State

BIOS hot-key sequences. That makes it easy to choose between the accelerated rate or the standard $4.77-\mathrm{MHz}$ speed of the 8088 CPU. No other utilities are necessary for the board to function properly.

Depending on the application, PC-BANDIT boosts the PC's processing speed as much as 60 percent. It is priced at $\$ 69.95$.-Prism Electronics, Inc., 14682 NE 95th Street, Redmond, WA 98052.

EQUIPMENT BELT, the Transporter 2000, is designed for comfort by allowing its load to be evenly distributed around the entire waist of

CIRCLE 12 ON FREE INFORMATION CARD
the body, and transfers that weight to the bone structure.

In addition to the comfort of the convoluted foam interior and the anti-slip moulding, the belt uses clip buckles that accommodate practically any kind of tool bag or other equipment-holding apparatus
The Transporter 2000 is priced at $\$ 49.95$.- Transport Technics, 8909 Complex Drive, \#F, San Diego, CA 92123.

TINNER/CLEANER, the TTC 1 , is a device for cleaning and re-tinning soldering iron tips. The tinner/

CIRCLE 13 ON FREE INFORMATION CARD
cleaner is a small block of elec-tronics-grade solder powder and chemicals compacted into the

Walk "Tough Dog" Troubles Out Of Any TV \& VCR In Half The Time . . . Guaranteed!

with the exclusive, patented VA62 Universal Video Analyzer ${ }^{\text {TM }} \ldots \$ 3,495$

Would you like to ...
Reduce your analyzing time? Isolate any problem to one stage in any TV or VCR in minutes, without breaking a circuit connection, using the tried and proven signal substitution method of troubleshooting.

Cut costly callbacks and increase customer referrals by completely performance testing TVs and VCRs before they leave your shop? Own the only analyzer that equips you to check all standard and cable channels with digital accuracy. Check complete, RF , IF, video and chroma response of any chassis in minutes without taking the back off the receiver or removing chassis, plus set traps dynamically and easily right on the CRT

Reduce costly inventory from stocking yokes, flybacks, and other coils and transformers for substitution only, with the patented Ringing Test? Run dynamic proof positive test on any yoke, flyback, and integrated high voltage transformer.

Protect your future by servicing VCRs for your customers before they go to your competition? Walk out "tough dog" troubles in any VCR chrominance or luminance circuit to isolate problems in minutes. Have proof positive tests of the video record/play heads before you replace the entire mechanism.

Have one piece of test equipment that doesn't need replacing every time technology changes? Be able to service Stereo TVs \& VCRs profitably, and get in on the ground floor of this growing market with exclusive phase-locked accessories.

Find out how the VA62 Universal Video analyzer will make servicing easier and more profitable in your shop? Call WATS Free 1-800-843-3338 and ask your area Sales Engineer for a "Try before you buy" 10 Day Self Demo or a full color brochure and join the many servicers already on the road to more profitable servicing with the VA62.

Universal Video Analyzer is a trademark of Sencore, Inc.

WATS Free 1-800-843-3338 In Canada WATS Free 1-800-851-8866

Means Success In Electronic Servicing
3200 Sencore Drive, Sioux Falls, South Dakota 57107
Call Collect 605-339-0100 In SD \& AK

You are only one manual away from knowing how the new technology in RCA's CTC 140 color TV chassis operates and how to service it!

CTC140 Color TV Chassis
Technical Training Manual

Some servicers were expecting tomorrow's high-tech color TV chassis to have a lot of technician-obsoleting, expensive black boxes . . . The CTC 140 is a hightech color TV chassis, but it doesn't have any black boxes. It is a state-of-the-art unitized chassis with advanced technology that can be easily and economically serviced by professional consumer electronic technicians . . . As a professional technician you need to learn how the new technology in the CTC 140 operates and what strategies we recommend you use to proficiently service it. That's why you should buy and carefully read the CTC 140 Color TV Chassis Technical Training Manual. Its price of $\$ 19.95$ is an excellent investment in professional upgrading . . . And to make the learning easier, we've included the companion Technical Training Workbook content at no extra charge. You get both the manual and the workbook information in one manual for only $\$ 19.95$.

ORDER FORM

Complete this order form, make check payable to "RCA Consumer Electronics" for full amount, and send this form and check to:

RCA Technical Training/1-450/P.O. Box 1976/Indianapolis, IN 46206
\square Send me \qquad copies of the RCA CTC140 Color TV Chassis Technical Training Manual with Workbook content @ \$19.95 ea.

Enclosed is my check for: \qquad copies $\times \$ 19.95=$ \qquad total

NAME \qquad
STREET ADDRESS
CITY STATE ZIP \qquad
shape of a thick disc. It is packaged in a metal container complete with lid and self-adhesive pad on the underside, so that it can easily be attached to any convenient surface
A single wipe of the iron tip across the TTC1block immediately cleans, wets, and tins the tip. It will remove even tin/iron intermetallic layers that form on iron plated tips and resists rosin-based fluxes. The chemicals it contains are non-corrosive and have a low evaporation point, so that nothing except solder remains on the tip after tinning.

TTC1 blocks are supplied in cartons of ten; the price is $\$ 3.95$ each.-Multicore Solders, Cantiague Rock Road, Westbury, NY 11590.

TELEPHONE ACCESSORY, the TWISSTOP, is a modular tele-phone-cord rotary connector. It al-

CIRCLE 14 ON FREE INFORMATION CARD
lows the telephone handset to rotate freely without twising the cord. Installation is simple. TWISSTOP clips quickly and easily into the standard modular tele-phone-handset jack.

TWISSTOP is available in a variety of colors, including almond, white, black, and clear, and can be imprinted with a logo or message; it is priced at \$5.95.-Telcor, Inc., 88 Hillside Road, Chester, NJ 07930.

PRINTER BUFFER BOXES. The model $B X-64$, the model $B X-128$, and the model $B X-256$, are capable of storing up to 256 K bytes of data for printing

The model $B X-64$ buffers up to 64 K of data; the model $B X$ - 128 buffers up to 128 K of data, and the model $B X$ - 256 buffers to 256 K of data. All three boxes are micro-processor-controlled printer-buff-ers/interface-converters, which

> Discover How The World's Only 100\% Automatic, Dynamic, \& Portable LC Analyzer Gives You Total Confidence In Your Cap/Coil Testing ... Call 1-800-843-3338 Today!

LC77 AUTO-Z ${ }^{\text {TM }}$
Automatic Capacitor and Inductor Analyzer Double Patented $\$ 1,895$ TEEE-48B

The first cap/coil analyzer guaranteed to reliably test anywhere, without calculations, look-up tables, or error - 100% automatically so you're confident of your accuracy.
Do you want to eliminate doubt from your cap/coil testing? The LC77 AUTO-Z tests all key parameters with results anyone can understand. Automatic good/bad results eliminate the guesswork for error-free analysis. Touchsensitive keypad and one-two-three setup makes your AUTO-Z the easiest and fastest LC analyzer on the market.

Are you frustrated trying to test the new high-tech caps/coils used in modern electronics? Only the LC77 AUTO-Z allows you to test them all. Test capacitcrs from 1 pf to 20 farads, with leakage tests to 1000 V and ESR to 2000 ohms for locating failures other testers miss. Inductor value from 1 uh to 20 H and a patented ringing test for dependable. error-free coil testing every time.

Do you need the freedom of a battery-operated portable LC meter? The LC77 is 100% battery portable for use in the field or factory. The full power and potential of the LC77 AUTO-Z is packed into a light-weight, portable package. The AUTO-Z puts the complicated electronics on the inside for ease of operation on the outside.
Do you want maximum efficiency with a bus compatible LC testing system? Your LC77 AUTO-Z is IEEE 488 compatible for automated cap/coil analysis for data collection, incoming inspection, and quality assurance tests.
Be satisfied that you can meet all the challenges new technology brings. Call WATS Free $1-800-843-3338$ today and tell your Area Sales Engineer you want to "try before you buy" with Sencore's exclusive 10 Day Self Demo.

AUTO-Z is a trademark of Sencore, Inc.
WATS Free 1-800-843-3338 In Canada WATS Free 1-800-851-8866

Means Success In Electronic Servicing
3200 Sencore Drive, Sioux Falls, South Dakota 57107 Call Collect 605-339-0100 in SD \& AK
accept data at very high rates from a host of computers and simulta-

CIRCLE 15 ON FREE INFORMATION CARD
neously feed that data to your printer at the printer's slower dataacceptance rate. The host computer is then free to process other data during printing, because the data transfer to the buffer box is accomplished very rapidly.

The suggested retail price for the model $B X$ - 64 is $\$ 169.95$; the model $B X-128$ costs $\$ 209.95$, and the model $B X-256$ sells for \$259.95.-Chenesko Products, Inc., 21 Maple Street, Centereach, NY 11720.

Your Career in ELECTRONICS or COMPUTERS

Put Professional Knowledge and a COLLEGE DEGREE in your Technical Career through

No commuting to class. Study at your own pace, while you continue on your present job. Learn from easy-tounderstand lessons, with help from your instructors when you need it.
Grantham offers two B.S. degree programs - one with major emphasis in ELECTRONICS and the other with major emphasis in COMPUTERS. Either program can be completed by correspondence (also known as "distance education"), NHSC accredited. The sooner you get started, the sooner you can be ready to benefit from greater knowledge and your B.S. degree.

Our free catalog gives full details of both degree programs. For your copy of the free catalog write to the address shown below, or phone (213) 493-4422 (no collect calls); ask for Catalog 10-87.

Grantham College of Engineering is a specialized institution catering to mature individuals who are employed in electronics and allied fields such as computers. These fields are so enormous that advancement opportunity is always present. Promotions and natural turn-over make desirable positions available to those who are prepared to move up!
Advancement in your career is made easier and more certain by (1) superior knowledge and (2) documentation of that knowledge - both of which are obtainable through Grantham distance education, fully accredited by NHSC.
Grantham's home study (distance education) programs leading to the

B. S. DEGREE

may fill an important need for you. These are comprehensive correspondence programs in which you first review some things you already know, in preparation for the studies that come later. Some previous knowledge in electronics is presumed, but is thoroughly reviewed in depth, so as to give you a thorough foundation for the level of studies you have not previously undertaken. Even though some students hold associate degrees before enrolling, an A. S. Degree is awarded along the way toward the B. S. Degree

For full information, write for Catalog 10-87.

COMMUNICATIONS

CORNER

Light makes the perfect wire.

YEARS AGO, BECAUSE ONIY A HANDFUL of circuits were needed to design almost all communications equipment, there was a logical progression to electronics technology, and it was possible to make an accurate guess as to what would come next. Today, the field of electronics is so fragmented that, more often than not, a manufacturer has no idea what's being developed by a competitor around
the block. More important, the competition might be leapfrogging what is otherwise accepted as the leading edge of technology, and suddenly an entire technology becomes obsolete. It's as if someone had already perfected a 20-meter SSB (Single SideBand) transceiver and the beam antenna while Marconi was still waiting to hear the spark signal from his transmitter located in England.

Just such a leapfrogging situation is happening today to the development of a national consumer communications network. Recently, there has been much ado about such a network in which the same wires used for the telephone would also provide digital access to a wide variety of services, such as on-line information and database, cable and pay-per-view TV hi-fi stereo music, school-at-

KENWOOD

Hear itAll!

R-5000

High performance receiver

THE high performance receiver is here from the leader in communications technology-the Kenwood R-5000. This all-band, all mode receiver has superior interference reduction circuits, and has been designed with the highest performance standards in mind. Listen to foreign music, news, and commentary. Tune in local police, fire, aircraft, weather, and other public service channels with the VC-20 VHF converter. All this excitement and more is yours with a Kenwood R-5000 receiver!

- Covers 100 kHz-30 MHz in 30 bands, with additional coverage from $108-174 \mathrm{MHz}$ (with VC-20 converter installed).
- Superior dynamic range. Exclusive Kenwood DynaMix ${ }^{\text {mm }}$ system ensures an honest 102 dB dynamic range. ($14 \mathrm{MHz}, 500 \mathrm{~Hz}$ bandwidth, 50 kHz spacing.)

- 100 memory channels. Store mode, frequency, antenna selection
- Voice synthesizer option.
- Computer control option.
- Extremely stable, dual digital VFOs. Accurate to ± 10 ppm over a wide temperature range.
- Kenwood's superb interference reduction. Optional filters further enhance selectivity. Dual noise blankers built-in
- Direct keyboard frequency entry.

R-2000 $150 \mathrm{kHz}-30 \mathrm{MHz}$ in 30 bands

- All modes - Digital VFOs tune in 50 Hz .

500 Hz , or 5 kHz steps 10 memory channels - Programmable scanning - Dual 24-hour digital clocks, with timer - 3 built-in IF filters (CW filter optional) - All mode squelch, noise blanker, RF attenuator, AGC switch, S meter - 100/120/ 220/240 VAC operation Record, phone acks - Muting terminals VC-10 optional VHF converter ($118-174 \mathrm{MHz}$)

- Versatile programmable scanning, with center-stop tuning.
- Choice of either high or low impedance antenna connections.
- Kenwood non-volatile operating system. Lithium battery backs up memories; all functions remain intact even after lithium cell expires.
- Power supply built-in. Optional DCK-2 allows DC operation.
- Selectable AGC, RF attenuator, record and headphone jacks, dual 24-hour clocks with timer, muting terminals, 120/220/240 VAC operation.

Optional Accessories:

- VC-20 VHF converter for $108-174 \mathrm{MHz}$ operation - YK-88A-1 6 kHz AM filter - YK-88S 2.4 kHz SSB filter - YK-88SN 1.8 kHz narrow SSB filter • YK-88C 500 Hz CW filter \bullet YK-88CN 270 Hz narrow filter - DCK-2 DC power cable - HS-5, HS-6, HS-7 headphones - MB-430 mobile bracket - SP-430 external speaker •VS-1 voice synthesizer•IF-232C/IC-10 computer interface.

More information on the R-5000 and R-2000 is available from Authorized Kenwood Dealers.
KENWOOD
KENWOOD U.S.A. CORPORATION 2201E. Dominguez St., Long Beach, CA 90810 P.O. Box 22745, Long Beach, CA $90801-5745$

FIG. 1
home, picturephone, dial-up computer-to-computer communications, and just about anything else that's imaginable.

A multi-mode world of home-and-office communications is possible because we can now easily digitize any kind of signal-voice, music, TV, the printed word-and anything that's digitized can be sent down a line and restored to its original form or structure at the receiving end. The only problem with the idea is that many of the people doing the high-tech work in digitizing signals are talking in terms of metallic-wire lines-existing telephone and cable-TV wiring. In my view, putting digitized signals on a metallic-wired system is like putting spoilers on an underpowered sports car. It will look great, and it might be fun to drive, but it won't be a better car.

Fiber optics

In the world of modern communications systems we rarely talk in terms of metallic wires; rather, the term "wiring," if used at all, refers to fiber optics. Not esoteric fiber systems that connect cities with other cities or teleports, but a stretch of fiber filament from one office to another perhaps fifty feet away, or from home to the telephone switching center.

All other considerations aside, a major advantage of fiber-optic communications is speed. For example, a conventional fiber-optic office system that is presently available from AT\&T will easily handle data communications at 200
megabits per second. You're not going to do that with conventional wires, and that's the cheap system. Even higher speeds, to 1 gigabit/ sec, are possible by using laser transmitters.

But why would you, or anyone else, want so high a data rate for conventional use? Because the faster we can push data through a line the greater the number of signals that can be multiplexed. Ignoring the overhead loss-the bits needed to encode the individual digital signals-ten different 20 megabit signals could be sent through a 200-megabit system, and even 20 megabits is unusually fast for consumer applications.

How it's done

Figure 1 shows a simplified fiberoptic communications system. On the left we have a sending (transmit) MUX; MUX is shorthand for several terms having to do with multiplexing, such as multiplex and multiplexer. On the right we have a receiving MUX, which separates the signals and also restores the bits and pieces of a MUXed signal to the form it was in when it was input to the sending MUX-its original digital form.

The sending MUX looks at the incoming lines in order and strips off a single data block, or whatever data or bit group that it's designed for. The MUX affixes a header (digital code) representing a specific data source to the front of the block. (Line 1 has its own header, Line 2 its own, etc.) The transmit continued on page 103

Test RS232C In AZip.

Test RS232C data communications interfaces-like computers to printers, computers to modems, and computers to computers-fast and easy in the palm of your hand with Beckman Industrial's low-cost, easy-to-use line of testers. Each is self contained in a Toughpak case, including five models in a durable zippered pouch, and a 10 -year warranty on every model. Prices start as low as $\$ 49.95$.

See your nearest Beckman Industrial distributor today, or send for free brochure: We'll send it to you in a zip.

Quick Cable Customizing
Fast RS232C interfacing and Testing
LED Identification of Cable Configurations
Pocket and Hand-beld Compactness
Speeds Up Trouble Shooting
10 Standard, Lou-Cost Models

Beckman Industral Corpuration Instrumentation Products Itivision A Subsidiary of Emerson Electric Company 3883 Ruffin Rd. San Diego, Californa 92122 -1898 (619) 565-4415•FAX: (619) 268-0172•TLX• 249031
(c) 1987 Beckman industrial Corpuration

Train for the Fastest Growing Job Skill in America

Only NRI teaches you to service all computers as you build your own fully IBM compatible microcomputer

With computers firmly established in offices-and more and more new applications being developed for every facet of business-the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years-a faster growth rate than for any other occupation.

Total systems training

 No computer stands alone it's part of a total system. And if you want to learn to service and repair computers, you have to understand computersystems. Only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM PC compatible Sanyo 880 Series computer.

As part of your training, you'll build this highly-rated, 16-bit IBM compatible computer system. You'll assemble Sanyo's "intelligent" keyboard, install the power supply and disk drive, and interface the high-resolution monitor.
The 880 Computer has two operating speeds: standard IBM speed of 4.77 MHz and a remarkable turbo speed of 8 MHz . It's confidence-building,
real-world experience that includes training in programming, circuit design and peripheral maintenance.

No experience necessaryNRI builds it in

Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab ${ }^{\circledR}$, professional digital multimeter,

Learn Computer Servicing Skills with NRi's "Hands-On" Training . . .

Using NRI's unique Action Audio Cassette, you are talked through the operation and practical application of your hand-held digital multimeter-the basic, indispensable tool for the computer specialist.

You'll set up and perform eiectronics experiments and demonstrations using your NRI Discovery Lab. You'll even interface the lab with your computer to "see" keyboard. generated data.

After you build this digital logic probe, you'll explore the operation of the Sanyo detached "intelligent" keyboard and its dedicated microprocessor.

and logic probe. Like your computer, they're all yours to keep as part of your training. You even get some of the most popular software, including WordStar, CalcStar, GW Basic and MS DOS.

Send for 100-page free catalog

Send the post-paid reply card today for NRI's 100 -page,
full-color catalog, with all the facts about at-home computer training. Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you'll work with and keep. And check out NRI training in other high-tech fields such as Robotics, Data Communications, TV/Audio/Video Servicing, and more.

If the card has been used, write to NRI Schools, 3939 Wisconsin Ave., N.W., Washington, D.C. 20016.

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue, NW Washington, DC 20016

We'll Give You Tomorrow.
IBM is a Registered Trademark of international Business Machine Corporation.

as You Build Your Own Sanyo 880 Computer System.

The power supply is assembled in the main unit of the computer. You check out keyboard connections and circuits with the digital multimeter included for training and field use.

Next, you inst 1 Il the disk drive. You leam disk drive operation
and adjusime nt , make a copy of MS-DOS operating disk and and adjustme it, make a copy of MS. DOS operating disk and begin your exploration of the 8088 CPU .

Using the monitor, you focus on machine language programming, an indispensable troubleshooting tool tor the technician. You continue by leaming BASIC language programming.

LASER LISTENER

Use a light beam to listen in to anything, anywhere, any time.

RICHARD L. PEARSON

BREAKING ANI) ENTERING TO PLANT A LIStening device is one way to "bug" a room. Unfortunately, it can earn someone a long jail term too. A better and safer way to bug a room is to use a laser beam to eavesdrop on a window from across the street.

The sound waves generated by nearby conversation will cause the glass in a window to vibrate very slightly. If a laser beam is bounced off the window, its reflection will be modulated by the vibrations. All that's needed to hear what is being said is a demodulating device that extracts the audio from the reflected laser beam. That technique is used by sophisticated "surveillance experts," but you can casily duplicate that feat by using a hobbyist's laser and the inexpensive Laser Listener demodulator shown in Fig. 1. If you need something a little more sophisticated, it can be made part of the riflescope aimed laser-bug system that is shown in Fig. 2.

Early light-wave communications

Communication using a modulated beam of light isn't a new idea. In the 1880's. Alexander Graham Bell experimented with something he called a photophone; a device that modulated a beam of sunlight. It had a mouthpiece that concentrated sound energy on a reflecting diaphragm, which, in turn, modulated a beam of sunlight that was aimed at the diaphragm. When a remote receiver con-

WARNING

Extra precautions must be taken because of a laser beam's intense concentrated energy. Among other factors, the hazards presented depend on the power density, the frequency of the beam, and the time of exposure. Guidelines have established the classification of lasers. A brief description of the classification is as follows:

Class I: Low-power beam. Not known to produce any biological injuries to the eye or skin,

Class II: Reserved for visible-light lasers only. They are limited to less than 1 milliwatt output. Eye damage will result if stared into for longer than 1 second. The normal blink response of the human eye will provide protection. Eye damage will occur if the beam is viewed directly by optical instruments. Direct (specular) reflection, as from a mirror, should be considered to be the direct beam. Diffuse reflection of the light may be viewed.

Class III: Instantaneous eye damage will occur if exposed to the direct beam.
Class IV: Both direct exposure or direct and diffuse reflections will produce eye damage. Exposure of the skin to the beam is hazardous. The beam is considered to be a fire hazard

FIG. 1-THE LASER RECEIVER has extremely high gain, so be sure to keep the wiring of Q1 and IC1 separated from !C2's output and the connections to J1.
sisting of a photovoltaic cell and a sensitive earphone was positioned in the beam, the voice could be heard clearly from the receiver. The aiming problems presented by the movement of the sun, and the interruptions due to clouds and night, probably prevented the commercial exploitation of the device

But by using coherent light-such as that produced by a continuous-wave laser-the principles used by Bell's device may again be applied in a meaningful way. After all, terrestrial lasers aren’t influenced in any way by sunlight or clouds. And perhaps more important, unlike acoustic sound-detection devices, lasers aren't usually subject to interference originating between the sound source and the receiver.

For example, remote sound-pickup devices in the form of directional microphones have been available for many years. Unfortunately, any sound generated between the listener and the sound source usually renders the device useless because the interference is heard at the receiver, and it can be even louder than the source. On the other hand, lasers are not sensitive to sound of any kind between the source and the receiver. However, lasers may be subject to other kinds of interference: For example, AC-powered incandescent lights can produce a hum: gas discharge devices such as fluorescent, mercury, sodium vapor, and neon lights might produce a buzz; and direct sunlight might swamp the laser detector device. Also. where unusually long distances are involved, air currents can add flicker to the laser heam, which on windy days can result in a noise that is similar to that of blowing into a microphone. (But even though sensitive to some kinds of elec-
trically-generated noise, laser-listening devices have an advantage: They can seemingly hear through walls or closed windows, and even selectively monitor only one window of a building from several hundred feet away.)

Conmercially-available laser sound pickups use a laser device having an output in the infrared region. Becatuse infrared is below the visible portion of the light spectrum, it cannot be seen by humans. However, some commercial devices have a power output rating as high as 35 milliwatis. At such a power level there is clear potential for eye damage if someone in the target area unknowingly stares into the beam, or if
the laser is operated carelessly by the user.

Laser basics

Although the details underlying the generation of laser light are beyond the scope of this text, an understanding of some of the characteristics of a laser beam as compared to ordinary light will be helpful in assembling a laser-listener system.

Light is considered to be comprised of packages of energy particles called photons. However, light is also electromagnetic radiation and behaves like radio waves, although at a much higher frequency. The perceived color of visible light is determined by the radiation's wavelength, which is usually given in micrometers (one micrometer $=10^{-9}$ meters). The shorter wavelengths are perceived as violet, the longer wavelengths as red. The spectrum below the visible portion is called infrared; the spectrum above is called ultraviolet

The light emitted by a conventional incandescent or fluorescent source contains a wide range of frequencies, and the photons are emitted randomly and spontaneously in all directions. On the other hand, in a laser light source the photons are released in one direction, at one frequency, making the laser light highly directional and pure in color. (An analogy would be to liken ordinary light to the white noise, while the laser is likened to a sinewave-a single pure tone.) Since all of the light emitted by a laser is coherent (has the same frequency), constructive or destructive interference occurs when two beams of laser light meet at the same place and time (Fig. 3).

As shown in Fig. 3-a, the beams cance each other when out of phase (destructive interference). As shown in Fig. 3-b, the

FIG. 2-FOR LONG-RANGE USE the laser and the receiver should be combined into an integral unit so both are aimed together. The telescopic signal provides precision aiming on the target.

FIG. 3-SINCE LASER LIGHT IS COHERENT, reflections can both cancel and reinforce the direct beam.
beams are additive when in-phase (constructive interference). It is the interference between the beams that enables the movement of any reflecting surface to be sensed by a device called an interferometer. An interferometer is a beam splitter-usually a piece of partially-mirrored glass- what deflects only a small part of a beam aimed through the glass. As shown in Fig. 4. it can be used to reflect both the source and reflected laser heams so that their phasing or amplitude can be compared by a receiver.

The major problems with using interferometry for eavesdropping is that only a part of the laser's energy is directed at the target, limiting the working range, and the interferometer is sensitive to the diffusion of the sound target's reflections caused by tremors in the mountings of the

FIG. 4-AN INTERFEROMETER DIVERTS part of the laser to the target. Its chief advantage is that it can sense any kind of movement at all four points: the source, the reflector, the target, and the receiver.
interferometer, the laser, and the reflective target. For super-snooping, a direct reflection from the target is preferred because the collimatec nature (parallelism) of laser light also allows modulation of the beam to occur just as Bell's photo-phone modulated the sunlight.

The prototype's laser

Regardless how we choose to eavesdrop, we must start out with a laser, so we'll cover the prototype laser-bug's laser unit first. It's a Heathkit model ETS-4200 Laser Trainer, a Helium Neon (HeNe) unit having an output power of 0.9 milliwatts. It has a beam divergence of 1.64 milliradians, which produces a spot of light $11 / 2$-inches in diameter at 200 feet. Although 0.9 milliwatis doesn't appear to be much power, it can cause extreme eye damage if allowed to shine or be reflected directly into the eye, or if viewed directly through any optical device such as a telescope, binocular, etc. The beam may be safely viewed only if projected onto a non-reflective surface such as a white sheet of paper.

If you want to keep costs at rock-bottom, or just want the excitement of a complete home-brew project, another alternative is to assemble the helium-neon laser shown in the June 1986 issue of Ra-dio-Electronics. Also, if you want to build a laser from your own design, he-lium-neon tubes are often available from "surplus" distributors.

The receiver

The Laser Listener's receiver is relatively easy to build and adjust. It is designed to drive a 4-20-ohm headphone or
speaker, which permits just about any high-fidelity or Walkman-type headphone to be used for monitoring. The circuit shown in Fig. 1, uses a photo transistor (Q1) for a sensor, and has a meter (MI) that indicates the relative signal strength of the reflected laser beam. Because the meter responds only to the amplitude modulation of the reflected laser beam, it is unaffected by ambient light and the relative intensity of the laser beam. An adjustable polarizing light filter can be installed in front of Q1 to avoid swamping of the phototransistor by very high ambient light.

Phototransistor Q l is an inexpensive type usually called an IR detector, which means that it is specifically sensitive to infrared light. Tests comparing the unit specified in the parts list with other less readily-available and more-expensive devices show no measurable differences in performance in the prototype receiver. No base connection is used for Ql because the reflected laser light controls the collector current. The andio signal developed across collector load-resistor RI is coupled by C2 to voltage-controlled attenuator ICl , which has a greater than 30 dB gain variation; It serves as both a preamplifier and as an electronic volume control

Resistor R 2 and capacitor Cl decouple (filter) the power supply voltage to $\mathrm{Q} \mid$ and ICl . Be sure to take extreme care not to eliminate or accidentally bypass the filter because that will cause unstable operation. The gain of Ql and ICl is too great to permit non-decoupled operation from the power supply.

The output from ICl is fed through C 4

FIG. 5-A COMPONENT-POSITION TEMPLATE cemented to the pre-drilled PC board will simplify assembly.

FIG. 6-THE OPTICAL ATTENUATOR assembly fits directly over phototransistor Q1. The front is painted white to help in aiming the reflected laser beam.
to amplifier IC2. Resistor R 4 . and capacitors C5 and C7. tailor IC2's frequency response and ensure stable operation with varying drive levels and output loads.

The output of $1 C 2$ is split into two paths: One goes to ourput-jach JI via Co; the other feeds voltage-follower IC3, which drives the meter circuit consisting of D1. D2. CHI, R8. and MI. The time constant ereated by the values of $\mathrm{R} 8, \mathrm{Cll}$, and Mis DC resistance was selected to provide a combortable damping of the meter pointer's gyrations. The value of CII may be varied to change the pointer's response. Increasing the value of CII provides a smoother response: decreasing Cll's value will cause the pointer to more closely track the variations in the laser beam's modulation.

Construction

The prototype receiver was assembled on a modified Radio Shack type 276-170 pre-drilled PC board, which has strips of copper foil on the underside that connect the component mounting holes. (A board with a parts-placement template in place, as shown in Fig. 5, is arailable from the source given in the Parts List.) Nothing about the layout is critical as long as you follow the usual precaution of keeping the imput and output connections reasonably separated.

Check your parts layout against the foil strips on the underside of the board. If it appears that any will be too long, cut them to size hefore mounting any components. Cut each foil strip exactly as long as needed so that a foil carrying the input signal docent end up running adjacent to an output connection.

For best results when making connection to the foils. use a sinall pencil-tipped soldering iron and .040 diancter rosincore solder. If your layout requires jumpers between component inounting holes. use \#22 solid. batre wire. Insulated jumpers are \#22 solid. insulated wire. Connections betucen the copper foils should be \#IX insulated wire because it's a precise push-fit for the holes in the specified protolyping board.
potentiometer R5, and the meter are mounted on the side of the cabinet so ats to encourage the user to face at a right-angle to the source of the laser light, thereby lessening the chance of looking directly into the reflected beam
The board is mounted in the enclosure with four $3 / 2$ inch 6-32 machine screws. Use $1 / 8$ inch insulated spacers between the board and the enclosure to insure adequate clearance between the enclosure and the board's foil side. A ground lug located at one mounting screw is soldered to the circuit-board's ground foil to provide the ground connection between the board and the cabinet. The connections between the board and the panelmounted components can be \#18-22 stranded, insulated wire

Optical attenuator

The optical attenuator assembly, for which construction details are shown in Figs. 6 and 7, mounts over phototransistor Q1. Figure 6 shows how it's installed over QI: Fig. 7 shows the individual details for each component in the assembly. The front of the assembly is painted flat white

FIG. 7-All PARTS OF THE OPTICAL ATTENUATOR are made from brass sheet or tubing. Both the inner and outer filter bases are soldered to the brass mounting plate.
so that the reflected laser beam can be easily seen. The attenuator is built in such a way that the phototransistor can see the laser heam direcaly, or through a combination of one or two polarizing filters. When both tilters are in place, rotation of the large-diameter filter-mount will calluse a gradual decrease in light transmission (1o almost total blockage within 90° of rotation), which allows the receiver to be used over a wide range of light intensities without swamping the photo detector. Figure 8 shous the installed assembly and the two filters.

The attenuator has an inner filter and an outer filter made from brass telescopic tubing. Each filter consists of two sections: a filter base that is soldered to small mounting plate made from brass sheet (the painted target) and a filter mount that slips over the base. Polaroid filters cut from neutral-tint polarized sunglasses are cemented to one end of each filter mount to complete the attentator: When complete, the entire optical attentuators mounting plate is secured on the enclosure over phototransistor Q1

PARTS LIST

All resistors are $1 / 4$-watt, 5% unless otherwise noted.

R1-2200 ohms
R2-220 ohms
R3-33000 ohms
R4- 10 ohms
R5- 10.000 ohms, miniature potentiometer with SPST switch
R6, R7-22,000 ohms
R8-25000 ohms. trimmer potentiometer

Capacitors

C1, C6, C9, C10- $330 \mu \mathrm{~F}, 16$ volts, electrolytic
C2, C4- $10 \mu \mathrm{~F}, 16 \mathrm{~V}$ volts, electrolytic
C3- $0.001 \mu \mathrm{~F}, 50$ volts, ceramic disc
C5 $0.68 \mu \mathrm{~F}, 16$ volts, Tantalum
C7, C8-0. $047 \mu \mathrm{~F}, 50$ volts, ceramic disc
C11-4.7 $\mu \mathrm{F}, 16$ voits, electrolytic
$\mathrm{C} 12-1000 \mu \mathrm{~F}, 16$ volts, electrolytic
Semiconductors
IC1-SK-3891 attenuator
IC2-LM380 audio amplifier
IC3-LM741 op-amp
Q1-TIL414. NPN phototransistor (Radio Shack 276-145 or equal)
DI, D2-SK-3090 germanium diode, or equivalent
Other components B1-9-volt tran-sistor-radio type battery
J1-miniature phone jack
M1-250 $\mu \mathrm{A}$ meter, panel mounting
S1-SPST switch, part of R5
Miscellaneous-Cabinet, Pre-drilled PC board, brass sheet and tubing, wire, solder, etc.
The following is available from Dirijo Corp., Box 212, Lowell, NC 28098. A drilled prototype-board with a component layout overlay in place, model LXVR-1. $\$ 4.50$ plus $\$ 2.50$ postage and handling. NC residents please add appropriate sales tax.

FIG. 8-THE ATTENUATOR'S mounting plate is installed directly over photoresistor Q1. The inner and outer filters are slipped into position when needed.

Testing

We advise that a small speaker be used rather than headphones for the initial tests; then, if a wiring error or a delective component has created an andionscillator rather than an amplifier, your ears will not be assaulted by a high-level tone or squeal.

With the volume control fully counterclochwise and power-switch SI set to off, instatl the battery and connect the speaker. Turn the unit on and point it toward a source of daylight (not direct sun). Advance the volume control to maximum. Correct operation is indicated by a frying noise that sharply diminishes when the light is blocked. The meter-sensitivity control, R8, should then be set so that the meter's pointer just begins to move off the zero calibration. Decrease the gain and point the receiver toward an AC-powered light source. such as an incetthdescent or fluorescent light, or even an LED driven by an audio oscillator. Those sources should produce at loud hum or tone. Sound will be heard if the IED) is driven from an andio amplifies at the correct level. If everything chechs OK. assemble the enclosure.

Remote sound detection

To use the receiver as a remote sound pickup, you will need a laser and a retlective surface that sound waves will cause to vibrate: the receiver must be positioned so it can "catch" the direct reflection of the laser boam (Fig. 9). A particularly effective reflector for experimental use is a small piece of mirror (about $1 / 4 \times 3 / 4$ inch) cemented to the center of a speaker cone (see Fig. 10). There is no connection made to the speaker. The movement of the speaker cone caused by sound waves is transterred to the mirror-reflector. which in turn modulates the laser beam.

Due to the varying reflectivity and distances of the targets, the intensity of the light falling upon the detector may vary considerably from setup to setup. That will be raidily apparent ir the collector voltage of Ql is measured while the illumination level on Q ! is adjusted. A1 some point of increasing illumination, the collector volage will fall sharply and the audio output from the receiver will drop or disappcar. The small-diameter polarized filter should then placed over Q1. If more light attenuation is required, slip the large-diameter filter in position and rotate it for maximum sound output.

FIG. 9-A WIDE RANGE of reflection angle is possible. The laser source and the receiver can even be at the same location.

FIG. 10-FOR EXPERIMENTAL USE, an effective reflector can be made by gluing a sma l piece of mirror to the center cone of a speaker. Also shwon are Mylar, at left, and glass, at left, reflectors.

Thin is in

The thinner and more responsive to sound the retlective medium is, the greater the laser bug's sensitivity. Most window panes will work. Moving the beam to different spots on the glass can make a dramatic difference in the sensitivity.

For testing, no additional optics are needed for the receiver, Set up any convenient reflector-the mirrored speaker, or even an embroidery hoop holding plastic wrap or Mylar film (see Fig. 10)-aim the laser at the reflector, and then position the reflector so that the beam bounces back to the receiver. If you speak in the room, or play a radio or a tape recorder, the sound will be heard in the receiver's headphones. Another test can be done by modulating the laser with a $1-\mathrm{kHz}$ tone while having an assistant move the target reflector for maximum tone reception-as indicated by maximum volume in the highest meter reading.

A non-adjustable target, such as a window pane, requires that the operator select a site where a direct reflection can be caught. That can be done from hundreds of feet away if conditions are right. Use the modulated beam for setup, and then
remove the modulation to listen in. Dou-ble-pane glass and storm windows tend to greatly reduce sound transmission to the outer glass. It is possible, however, to aim through the glass to an object within the room, such as the glass front of a china cabinet or a hanging picture. The returned reflection is usually modulated.

At long range

At ranges greater than 100 feet or so, or when a high ambient light level obscures the reflected beam, a means must be provided to accurately aim the receiver to the reflected laser. As shown in Fig. 11, the receiving unit of our prototype laserbug system uses a telescopic gunsight: and that assembly is, in turn, mounted directly on the laser housing as shown in Fig. 2 so both the laser and receiver can be aimed as a single unit.

The design of a combination receiver and laser mounting bracket will depend on the particular laser and scope that's being used. In general, the mounting bracket should be sturdy and have provisions for coarse elevation and azinuuth adjustments: all gun scopes have provisions for fine adjustments. The adjustment de-

FIG. 11-AT LONG DISTANCES, a telescopic gun sight is used to accurately aim the rece ver. That assembly is then strapped to the laser, as shown in Fig. 2, so that both units can be aimed together.

FIG. 12-DETAIL FOR THE RECEIVER mounting plate. An oversize hole mounting base allows coarse adjustment of the scope assembly. Use an oversize washer on both sides of the hole, and a lockwasher at the laser's case.

FIG. 13-THE AIMING TARGET for the scope/ laser assembly should be made of dull-finish paper or cardboard. Dimension " A " is the measured distance between the laser beam and the optical center of the scope. Dimensions " B " and " C " are whatever you think will be convenient. The aiming cross-marks should be made with a soft pencil or a medium-point marking pen.
tails for the prototype mount are shown in Fig. 12.

The scope-to-laser alignment is done in two stages. First, the distance from the center of the laser beam to the center of the scope is measured and used as the spacing for the cross marks of the target shown in Fig. 13, which is made from dull, white cardboard. Then, the target is taped to a wall about 50 feet away from the laser assembly. Next, with the scope's cross-hair adjustments at the center of their range, position the laser beam at the center of the lower cross. Looking through the scope, adjust the scope's mounting bracket so that its cross-hairs are close to being centered on the target's upper mark. Making sure that the laser beam stays centered on the lower mark, tighten the mounting bracket's nuts and use the scope's fine adjustments for the final alignment. In this instance, the diffuse reflection of the laser beam from the card should present no eye hazard.

When using the laser/scope assembly, remember that at a range of under 300 feet you must compensate for the aiming error introduced by the offset between the scope and the laser beam centerlines.

Again, let us stress that under no circumstances should the laser beam or its direct reflection be viewed through optical devices of this type because severe damage to the eye can result. R-E

DIGITAL AUDIO TAPE

The audio-tape format of tomorrow is here today.
BRIAN C. FENTON, MANAGING EDITOR
get ready hor the next revolution in audio. Digital Audio Tape (DAT) is on its way! Just as the compact disc is replacing the LP, you can expect DAT to replace the conventional audio cassette.

Just imagine audio tape with a frequency response that is flat from 2 Hz to 22 kHz . Imagine making your own hiss-free recordings with a dynamic range better than 96 dB . (Compare that to the $50-60$ dB dynamic range of a standard cassette tape with noise reduction!) DAT is coming, and you should he ready for it.

Actually, digital audio tape has been around quite a while. As long as a decade ago, devices were available that would allow digitized audio to be recorded on VCR's. But they were a far cry from the dedicated DAT format we 1 ll he discussing. The new generation was first demonstrated a year ago at the Japan Audio Fair, and then at the January 1987 Winter Consumer Electronics show. But all the DAT decks shown in this country were "prototypes only." No one would even discuss marketing plans.

Finally, this June, Marantz announced at the Summer Consumer Electronics Show that they would bring DAT machines into the U.S. as early as this fatl. That hasn't happened yet, and the future of DAT could be in jeopardy thanks to some controversy in the industry regarding an anti-copy system that may be im plemented-and even required by the
U.S. government-in all DAT machines. We'll get to that issue later. First, let's see what the advantages of the new digital audio tape are.

Is digital better?

When audio tape moves across a tape head, the magnetic panticles in the tape pick up and retain the magnetic lield created in the head gap. When you play the tape back, you should, of course, hear a duplicate of the signal that was used to create the magnetic field. But in the reat world, things aren't that simple. The transfer characteristics of audio tape, shown in Fig. 1, are non-linear. As a re-
sult, the recorded signal is a distorted version of the input.

There is a way to decrease the distor-tion-by creating a bias field to force the audible signal into the linear portion of the transfer characteristics. The results aren't perfect but, as cassette sales indicate, they certainly are adequate for many people.

Digital audio tape cassettes also use magnetic tape, and that magnetic tape also has a non-linear transfer characteristic. But as you can see in Fig. 1-b, a digital signal-which has only two discreet values-is not affected by the tape's non-linearity.

But how can an analog audio signal be

FIG. 1-THE NON-LINEAR CHARACTERISTICS of audio tape cause distortion in the recorded signal (a). However, since digital signals contain only two values, they are not affected by the non-linearity.
replaced hy a string of digital datawhich consists of only ones and zeros? It's done by digital sumpling. An analog signal is sampled at a given rate, and the value of the sample is assigned a number. Figure 2 shows the process

It might seem stange that a staircaselike signal could accurately represent a smooth analog signal. But if the sampling rate is fast enough, and if a sufficient number of bits is used to represent each sample. the results are excellent. If you've ever heard a compact dise-which also uses digital sampling-vou know just how good the results can be.

DAT vs. CD

Both DAT and CD use 16-hit Pulse-Cock Modulation (PCM), but each uses a different sampling rate: 48.000 samples/second for DAT, and $4+100$ samples/second for CD. Because of the diflerent sampling rate. it is impossible to make a direct digital-to-digital recordings of a CD. In fact, that's precisely why a different rate wis chosen.

Pre-recorded digital tapes are recorded with the same sampling late as $C D$ sare But tapes you record at home are recorded at the higher rate. The DAT player can play bach cither lape. but can record only at the higher sampling rate. You will be able to make direct digital-to-digital copies of tapes you record yourself, bun not of CDis or pre-recorded tapes

In terms of sound yuality. DAT and CD compare equally. Each format, however. has its own outstanding features-and its own inherent problems. The most obvious advantage DAT has over CD is that consumers can make their own recording: It's no secret, however, that research is underway to create a recordable CD format. We have quile a few vears to wail before that happens though.

FIG. 2-A DIGITIZED SIGNAL is made up of samples of an analog signal.

FIG. 3-A DAT-TRANSPORT MECHANISM. When the cassette is inserted into the DAT machine. the protective cover opens, and the tape is wrapped around a rotary-head drum.

Another alvantage DAT has is its long playing time - the maximum length of a standard digital audio tape is two hours. while the maximum length of a $C D$ is about an hour:

Speahing of pre-recorded tapes. you can be sure that recording companies will release many bitles once the anti-copy issue is settled. Will pre-recorded material sell? Yes because DAT has some playback advantages over Cl)s-especially in antomotiles. The DAT pachage is smaller and much easier to hande than a CD. The lapes also fil easily in a shitt pocket, and will probably be very popular in personal portable players. The pachage provides a self-closing protective cover for the tape. which is important in the dirty auto environment. Perhaps more important is that the play back mechanism is much less subjeet 10 s ibration prohlems than CD players. so it will be casier to produce portable and automotive players.

CD technology. of course has some important advantages oner DIT. The (D) is a non-contact technology. Nothing but at bean ol laser light comes in contact with the dise during playback, so play ing a dise doesn't weat it out. DAT tape, on the other hand wraps 90 degrees around a drum that spins at a speed of 2000 revolutions per minute. limiting its lifetime.

CD plavers feature fast trach-access. In less than one second. you can access any random trach. DAT. of course, offers only seguential access. White fast-forward and fast-ren ind are indeed fast - ahout 20 seconds for each hour of tape- the access speed will never match that of CD).

The mechanics of DAT

Figure 3 shows a basic DAГ transport
mechanism. In some ways, it similat on the tape tansport mechanism in a VCR One significant difference is that the tape wap is only 90 degrees. That help- keep tape wear down. and it is one of the reasons that the rapid fast forward and reverse functions are possible

The DAT wape head rotates at 2000 rpm .

FIG. 4-THE DAT CASSETTE provides a dustfree enclosure for the tape. A series of holes on the bottom of the cassette identify the tape type, and whether the tape is pre-recorded.

FIG. 5-THE DIGITAL DATA on the tape are a lot more than simple digital representations of audio signals. There are a huge number of "housekeeping" bits as well (a). A block of PCM data is shown in b. Subcode blocks are similar to PCM blocks. except for identity words that tell the DAT player that the PCM data is a subcode, and which subcode it is.
and the tape is pulled from the reed at
 parant tape speed of io leat per secomed which is how son much data can be cram med onto such a small canselte

The DAT culssetle- which is athout hall the sice of a standerd compaty casselle in shown in Fig. A. It has al ler in commen with a vider calssetle. A hinged lial pro tectes the tape from dust and fingerprimes. A slider corers the hub holes when the tape is not in use. and heeps tape slach ho: minimum. Data and referche holes ale included to atutomatically instrued the DAT plater what tape type and thichnes is used. and whether the tape is pre-se corded. There is alser a hoke to prevern ateidental erasure
When a casselte is mserted into the reconder, the sliders move so the hubs can be aceesed. The lid apens. and the tape is nound around a motary head.

What's on the tape

A digital audios tape recording contains a lot more than the aution signals Organizing the data so that it can bo plated bach requires a lot of overthead

Figure 5 shows how the audio trath hare placed on the tape and how individual tracks are organized. Note that trosstalh
(Cominued on perse 77)

FIG. 6-A DAT PAYER/RECORDER. Note how the player will record direct digital inputs, and will output digital data directly. However, you will not be able to make direct digital-to-digital copies of any pre-recorded material because of differences in the sampling rates used.

Part 2THF: VIIDEO PALETTF IS built on two printedcircuit boards: a "main" board and a "special-cffects" board. The main board contains the video-signal splitting and recombination (summing amplifier) circuits. The special-effects board contains the circuits for the solarizer, posterizer, inverter, and the power supply

Circuit Description

Refer to Fig. 10, the schematic of the main board, and Fig. 11, the schematic of the effects board. Transformer T, diodes
and C4, provide ± 5 volts to ICI and serve as decoupling networks, reducing video cross-talk through the power-supply wiring. About 2 to 3 volts of inverted (positive sync) composite video appears at ICl pin 6 .

Inverted composite video is fed directly from ICl to IC2, an analog switch, and through R4, C5, and Q1 to the sync-sepatrator system. Transistor Q1 is normally non-conducting, because bias generated across R5 keeps QI cut off except during positive sync tips. Negative sync pulses appear at Ql's collector. Resistor R6
of the second section-about 10 microseconds. A positive-going pulse appears at IC3 pin 10. By proper adjustment of R80, the pulse can be made coincident to, and the same width as, the horizontal-blanking pulse. It's the same with the verticalsync pulses at the collector of Q3 trigger IC4. Both sections of IC4 function identically to IC3. Resistors R81 and R16, and capacitor C 12 . determine the pulse width of the first section-nominally 16 milliseconds. Resistors R82 and R17, and capacitor Cl 3 , determine the pulse width of the second section. By proper adjustment of

VIDEO EFFECTS

GENERATOR

Color correction, deliberate distortion, artistic picture control. Our video palette puts it all at your fingertips.

RUDOLF F. GRAF AND WILLIAM SHEETS

D5 and D6. and capacitors C52 through C55 form two half-wave rectifiers supplying +8 -volts DC to regulator IC 12 , and -8 -volts DC to regulator IC13
A 1 -volt peak-to-peak negative-sync video signal at input jack $J 1$ is coupled through Cl to the video amplifier consisting of R2, R3, R78, IC 1 , and C 2 . Switch S 4 can bypass Cl if DC coupling is necessary. Terminating-resistor R1 can be switched across the input by switch SI to provide a 75 ohm termination. Trimmer potentiometer R78 sets the amplifier's output level.

At least 0.5-volt peak-to-peak video is necessary for proper operation. ICl is an LM318, a video op-amp. Resistor R3 provides feedback and C2 provides frequency compensation for ICl . Resistors RI8 and R19. together with capacitors C3
provides a collector pull-up for Q1. Resistors R7 and R8 couple the sync pulses to Q2. Resistor R9 is the collector load for Q2. Resistors R10 and RII, and capacitors C6 and C7 form an integrator network that extracts vertical timing pulses from the composite sync at the collector of Q2. Capacitor C8 couples the timing pulses to Q3, which squares and shapes the timing pulses. The negative-going vertical sync pulses are used to trigger dual-multivibrator IC4.

Pulses at the collector of Ql trigger dual-multivibrator IC 3 ; the two sections of IC3 are connected as two cascaled monostable multivibrators. Resistors R79 and R14, and capacitor C9 determine the pulse width of the first section-about 53 microseconds. Resistor R80 and R15, and capacitor Cl 0 determine the pulse width

R81 and R82, the pulse appearing at IC4 pin 10 can be made coincident with the vertical-sync interval of the video-input signal. A negative pulse at IC4 pin 9 cuts off IC3 (horizontal gating) during ver-tical-retrace intervals. The horizontal and vertical gating pulses are summed across R20. Diodes D1 and D2 DC-isolate IC3's and IC4's outputs from each other. The pulse across $R 20$ is nominally +5 volts: it is low during line scan and high during sync intervals. It is fed to pin 9. the control lead, of video switch IC2.

Since IC2 pin 9 is low, during line scan intervals the normal video containing luminance and chroma from IC2 pin 4 appears at pin 5 . Inductor L , and capacitors C16 and C17 form a lowpass filter, while C15, R22, and L2 form a highpass filter. Resistors R23 and R24 terminate the

FIG. 12-INSTALL THE MAIN BOARD COMPONENTS in the order given in the text. While IC sockets aren't specified, their use is suggested. They make troubleshooting easier if you have any problems.

PARTS LIST-MAIN BOARD

All resistors are $1 / 4$-watt, 5% unless otherwise noted

R1-75 ohms
R2-2200 ohms
R3, R8, R10, R13, R20, R29-R32, R3410,000 ohms
R4, R22, R24-1000 ohms
R5, R7, R11, R14-R17- 33,000 ohms
R6, R9, R21- 4700 ohms
R12-220,000 ohms
R18, R19, R25, R26, R33, R35, R36, R38, R39- 10 ohms
R23-3300 ohms
R27, R28- 1500 ohms
R37-not used
R78-10,000-ohm trimmer potentiometer
R79-R82-25,000-ohm trimmer potentiometer
R83, R84, R85, R87-1000-ohm potentiometer
R86-5000-ohm potentiometer

Capacitors

C1- $470 \mu \mathrm{~F}, 16$ volts, electrolytic
C2, C21-5 pF, silver mica
C3, C4, C6, C8, C11, C14, C18, C19, C20, C22, C23, C29-C33-0.01 μ F, ceramic disc
C5- $10 \mu \mathrm{~F}, 16$ volts, electrolytic
C7, C9-0.0033 μ F, Mylar
C10-330 pF, silver mica or NPO ceramic disc

C12-2.2 $\mu \mathrm{F}, 10$ volts, Tantalum
C13-0.1 $\mu \mathrm{F}$, Mylar
C15, C28-100 pF, silver mica
C16, C24-43 pF, silver mica
C17, C25-47 pF, silver mica
C26-3-40-pF trimmer
C27-33 pF, silver mica
C34-C39-Not used

Semiconductors

IC1, IC7-LM318 wideband op-amp
IC2-CD4053 analog multiplexer/demultiplexer
IC3, IC4-CD4528 dual monostable multivibrator
IC5, IC6-LM733 differential video amplifier
Q1, Q2, Q3-2N3565 NPN transistor
D1, D2-1N914B small-signal diode
Other components
J1, J2, J3-Coaxial jacks, see text
L1, L3- $47 \mu \mathrm{H}$
L2, L4-18 $\mu \mathrm{H}$
L5- $68 \mu \mathrm{H}$
PL1-Power plug
S1, S4, S5-SPST switch
S2, S3-DPDT switch
T1-5.3 volts, 300 mA
Miscellaneous-Wire, solder, cabinet, mounting hardware, knobs, etc.
easier operation. Solarized video is fed through C51 to solarizer output level control R92, whose wiper feeds the inverter input bus through R77. Unprocessed video luminance is also fed to the bus from inverter level control R93.

Similar circuits

Switch S3-a selects the inverter circuit consisting of IC8 and its peripheral components. You may have noticed by now that the circuits using the LM318 are all very similar; hence we are not discussing them in detail except where significant differences are encountered. Resistors R87, R41, R42, and R53 feed an adjustable DC bias to IC8 to maintain correct DC-baseline levels when inversion is used. Resistor R47 feeds inverted output through S3-a to summing amplifier IC7, which is located on the main board. As in the other amplifier circuits using the LM318, a 10,000 -ohm feedback resistor (R 46) and a $5-\mathrm{pF}$ shunt capacitor (C 40) are used to set the gain and provide frequency compensation.

Construction

You can build the video palette from scratch using the PC-board patterns provided in PC Service. Also, a kit of

FIG. 13-ALSO INSTALL THE EFFECTS BOARD components in the order given in the text. As with the main board, IC sockets are suggested to simply troubleshooting.

PARTS LIST-EFFECTS BOARD

All resistors are $1 / 4$-watt, 5% unless otherwise noted	C51, C56, C57-470 μ F, 16 volts, electrolytic
R40-R43, R46, R47, R62, R64, R65, R68, R73-R77-10,000 ohms	C52, C53-2200 $\mu \mathrm{F}, 25$ volts, electrolytic Semiconductors
R44, R45, R53, R56, R57, R66, R67, R94, R96-R98- 10 ohms	IC8, IC10, IC11-LM318 wideband op-amp
R48-390 ohms	IC9-MC3430 high-speed comparator
R49-150 ohms	IC12-LM7805 + 5-volt regulator
R50-R52-22 ohms	IC13--LM7905-5-volt regulator
R54, R55, R58-R61, R69-4700 ohms	Q4-2N3904, NPN transistor
R63-2200 ohms	D3, D4-1N914B small-signal diode
R70-470 ohms	D5, D6-1N4002 silicon rectifier
R71-1000 ohms	Note: The following items are available
R72-330 ohms	from North Country Radio, P.O. Box
R95-100,000 ohms	53, Wykagyl Station, New Rochelle,
R99-10,000-ohm trimmer potentiomet	NY 10804: Main PC board \$12.50;
R88, R89, R92, R93- 1000 -ohm potentiometer	main and effects PC boards $\$ 25.00$; main PC board and all parts that
R90, R91-10,000-ohm potentiometer	mount on the board $\$ 49.95$; main and effects PC boards and all parts
Capacitors	that mount on the boards \$84.95.
C40, C47, C50-5 pF , silver mica	(The effects board is sold only in
C41, C42, C44, C45, C48, C49, C54, C55,	conjunction with the main board.)
C58, C59, C60, C61-0.01 $\mu \mathrm{F}$, ceramic disc	Add $\$ 2.50$ for postage and handling per total order. NY State residents
C43, C46-10 $\mu \mathrm{F}, 16$ volts, electrolytic	add appropriate sales tax.

All resistors are $1 / 4$-watt, 5% unless
ted
R68,R46,R47,R62,R64, R65
R68, R73-R77-10,000 ohms
R44, R45, R53, R56, R57, R66, R67
R94, R96-R98- 10 ohms
R48-390 ohms
R49-150 ohms
R50-R52-22 ohms

R63-2200 ohms
R70-470 ohms

- 1000 ohms

R72-330 ohms
R99-10,000-ohm trimmer potentiometer
R88, R89, R92, R93-1000-ohm potentiometer

R90,R9 -10,000 ohm potentiometer

Capacitors
C40, C47, C50-5 pF, silver mica 41. C42, C44, C45, C48, C49, C54, C55, disc
C43, C46-10 μ F, 16 volts, electrolytic
parts that includes the PC boards and all board-mounted parts is available from the source listed in the parts list. Knobs,
switches, jacks, plugs, case, etc., are not supplied with the parts kit. A suitable cabinet is the Radio-Shack 270-27.4

If you decide to etch your own boards, use single-sided .031 or . 062 phenolic matcrial, or fiberglass-epoxy (;-l0 (preferred). Figures 12 and 13 show the parts placement for the boards

Stuft the PC boards in this order: resistors, inductors, capacitors, controls, transistors, IC's. The lengths of the interconnecting wires aren't critical, but they should be as direct as possible. The palette`s input and output connections should be coax when possible. To reduce both stray capacitance and induced 60 - or 120 Hz pickup, the leads carrying video signals to and from the eflects board should be dressed away from grounded metal and the power-supply leads

The shafts for all the front-panel controls should be strain relieved. That can be done by passing them through holes in the front of the cabinet that are about .005" larger than the shaft diameter, which is nominally $1 / 4^{\prime \prime}$. If desired, bushings can be used around the shafts.

The front panel has eleven controls, a pilot light (if installed), and three switches; don't crowd its layout or it will be hard to use unless you have very small hands. RCA-phono, HF, BNC, or F-type video connectors are suggested for the external connections. Switches can be of the mini-

Plug a Friend into Radio-Electronics this Christmas ... and Save \$12!

This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get complete plans and printed circuit patterns for building valuable test equipment and electronic devices for home and car practical money-savers like these ... a TV signal descrambler ... a video test generator ... an auto exhaust analyzer ... a clockboard for his PC ... a radio commercial zapper ... a solid state barometer ... a working robot ... and many others!

PLUS ... equipment repair and troubleshooting ... circuit design ... new
product news and buyer's guides ... service clinics ... equipment test reports ... a special "Computer Digest" section ... regular columns on video, stereo, radio, circuits, solid state, satellite TV and robotics ... and lots more exciting features and articles.

SAVE \$12 ... OR EVEN \$24 ... For each gift of Radio-Electronics you give this Christmas, you save a full $\$ 12.00$ off the newsstand price. And as an R-E gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate - you save an additional \$12.00!

No need to send money ... if you prefer, we'll hold the bill till January, 1988. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!

ature type which use a $1 /{ }^{\prime \prime}$ mounting hole At this point, check your wiring and PC boards for correct component insertion and pin orientations, unwanted solder bridges, and completeness. If any wiring or assembly errors exist, correct them before proceeding farther.

Alignment

Alignment is simple. If possible, use an oscilloscope having a bandwidth greater than $5-\mathrm{MHz}$. While a scope docs make the initial alignment easier, do not let the lack of a scope discourage you, because final "tweaking" will be found easiest to do by watching the picture. If a scope isn't available, simply observe the effects of your adjustments on a TV monitor; we'll tell you what to look for.

Prepare the video palette for alignment by setting R78, R79, R80, R81, R82, and R99 so that they are in the center of their range (midway). Then connect the video palette as shown in Fig. 14.

FIG. 14-USE THIS KIND OF HOOKUP for checking and aligning the video palette. A TV-tuner signal source can originate in the VCR, or use an integral TV-tuner device.

Next, connect the ground lead of a 20,000 -ohm/volt (or higher) VOM that is set to read about 10 -volts full scale to the main board's ground foil; then apply power to the video palette. Very quickly check the voltages across C56 and C57they each should be 5 volts ($C 50$ has its negative lead grounded, and C57 has its positive lead grounded). Then very quick$1 y$ check for the following voltages on the indicated pins of ICI, IC7, IC8, ICIO, and ICll:

Pin 6: 0 -volts (± 0.5 volts OK)
Pin 7: +5 volts
Pin 4: -5 volts
Make the following checks on IC5 and IC6:

Pin 5: +5 volts
Pin 6: +5 volts
Pin 8: 0 volts (± 1 volt OK)
Pin 9: 0 volts (± 1-volt O K)
Then, with no signal input to Jl or J 3 , check ICI, IC3, and IC. for:

Pin 10: 0 volts
Pin 9: +5 V volts
Pin 16: +5 volts
Pin 8: 0 volts
Also check IC2 for:
Pin 7: -5 volts
Pin 16: +5 volts
Check IC9 for:
Pin 16: +5 volts

Pin 12: -5 volts
Check Ql for:
Collector: +5 volts
Base: 0 volts
Check Q2 for:
Collector: 0 volts
Base: +0.6 volts
Check Q3 for:
Collector: +5 volts
Base: () volts
Check Q4 for:
Collector: +5 volts
Base: $+2-5$ volts (depends on setting of R88)
Emitter: 0.6 volt less than base
Nothing should get hot-if anything does, there is a problem that must be corrected before proceeding any farther.

If the test signal is provided by a VCR that can output a tuner signal instead of a tape signal, use the tuner signal because it has better stability.

The main board

If an oscilloscope is available, you can check your adjustments using the photographs shown in Figs. 15 through 26 as a general-not an exact-reference. Each figure shows the vertical sensitivity and sweep rate used to obtain the trace.

Apply a 1 -volt peak-to-peak negativesync NTSC video signal to Jl (Fig. 15). Close Sl to provide a 75 -ohm termination for the video source. Open S4 so that the video source is AC -coupled to the pallette. Set S2 to its in position. Adjust R78 for 3-volts peak-to-peak at ICI pin 6 (Fig. 16). Notice that the signal at pin 6 is inver-

FIG. 15-THE VIDEO INPUT at J1.

FIG. 16-INVERTED VIDEO AT IC1, pin 6.

FIG. 17-NEGATI', E PJLSES e: Qis collector.

FIG. 18-THE NEGATIVE FUL SES at Q3's collector might be difficul- to obse v ?.

FIG. 19-THE SCOPE DISPLFY shctic resemble this at IC3 pin 7.
ted. Check QI's collector for negativegoing pulses (Fig. 17). Transistor Q3's collector should also show negativegoing pulses ($\mathbb{F i g}$. 18), although because of their short duration they may be hard to see on a scope with screen brightness.

Adjust R79 for a nominal 53 -microsecond negative-going pullse at IC3 pin 7 (Fig. 19). Then set R80 bor a nominal 10microsecond positive-going pulse at lC3 pin 10 (Fig. 20). Next, adjust R81 for a negative-going 16 -millisecond pulse at IC4 pin 7 (Fig. 21). Then adjust R82 for an approximate 600 -microsecond positivegoing pulse at IC4 pin 10. If there is no pulse, tweak R81 until a narrower pulse is obtained (Fig. 22). Note that a 600 -microsecond pulse will not be generated if the 16 -millisecond multivibrator is set for too long a pulse.

FIG. 20-THE SCOPE DISPLAY AT IC3, pin 10 resembles the display at pin 7.

FIG. 21-THE DISPLAY FROM IC4 pin 7.

FIG. 22-THE: DISPLAY FROM IC4 pin 10 resembles that of pin 7 .

Aligning by monitor

If a scope isn't available, make the following adjustments and use a TV monitor to observe their effect.

1. Set R83, R85, R86, and R87 to their mid position. You should see a black-andwhite, or a weak color image on the monitor. Set all the effects-board controls for minimum resistance (off).
2. Adjust R79-you will see a "transition" on the right and/or left side of the screen. That is caused by IC2 switching the video through the sync channels. It instability is noticed on the monitor, adjust R85 for maximum stability. Adjust R79 and R80 to move the transitions just off the right and left edges of the screen so they are unseen during normal viewing. The picture may roll vertically-that is OK for now.
3. Adjust R81 and R82 for a stable, vertically-locked picture. When those controls are properly set there should be no "transitions" at the top or bottom of the picture
4. With all effects controls still set for minimum resistance, set S2 to our to bypass the video palette and adjust the TV monitor for a normal picture. Then set S2 to the in position and check that each control does what it's supposed to do.

- Resistor R83 should vary the picture contrast (luminance).
- Resistor R85 should vary the picture brightness. (When R85 is toward minimum, the picture should lose its sync.)
- Resistor R87 may vary the color saturation and reverse the colors (burst).
- Resistor R84 should operate in a simpilar manner to R87 (chroma).
- Resistor R86 should vary the tint. Ad-

FIG. 23-THERE IS ND SYNC at IC2 pin 5.

FIG. 24-THERE IS NO VIDEO at IC2 pin 3.

FIG. 25-AN INVERTED VIDEO OUTIPUT has the picture information going negative.

FIG. 26-A NORMAL VIDEO OUTPUT looks like this on your scope.
just C26 to produce normal tint when R86 is set to its mid position.
If you are using a scope, you can place the scope on IC7 pin 6 and observe the effect of each control on the video signal.
5. Set up R83 through R86 for a normal TV picture. Then set R83 to minimum. (All effects-board controls should be at zero again.) You should see a plain raster with only splotches of color, or on a black and white monitor, just a raster with only a very weak, faded picture
6. Set inverter switch S3 to normal The picture should return as you adjust R93 clockwise.
7. Set S3 to its invert position. A negative picture should be seen.
8. Adjust R99 for a satisfactory negative picture. (You may have to touch-up R85 on the main board first.) When R99 is properly adjusted, R85 can be left alone. Now set S 3 to its normal position.
9. Rotate R93 fully counter-clockwise. Set R88 and R89 to their mid position. Observe the effect on the TV picture. You should see a posterized image - it will be obvious. Then adjust R88 and R89 and take note of their effect on the picture. Finally, return R88 and R89 to zero (full counter-clockwise).
10. Set R90 and R92 to approximately their mid position and then slowly adjust R91-you will see the solarization effect. Adjust R90 and R92 for the best or the desired effect, although R85 may have to be readjusted at some settings.
11. Set S3 to both its normal and inVERT positions and observe the solarization effect (as in step 10).

If you have some form of instability or an undesired effect that we haven't mentioned, the following scope checks will help your track down the problem. Check for video only at IC2 pin 5 (Fig. 23); sync only at IC2 pin 3 (Fig. 24); normal video at output jack J2 when S3 is set to NORmal. (Fig. 25); inverted video at J2 when S3 is set to invert (Fig. 26).

That completes the alignment and checkout. The rest is up to you. A few hours of just plain experimentation is the best way to learn what the video palette can do.

Part 11IF YOU'VE BLEN FOLlowing this series. by now you have no doubt noticed that our robot does not have a traditional multijointed robotic arm. In its place is an "arm" that resembles a fork lift.
There are several reasons why that approach was chosen. First, it allows our robot to lift loads up to 10 pounds-multijointed arms usually are limited to lifting loads of one pound. or less. Second, our design is relatively inexpensive to implement. Third, few tasks actually require multi-jointed dexterity to get the joh done-tasks performed with a multijointed am often deteriorate into programming exercises. When we considered those factors, our design semed to be the obvious way to go.

Of course, some tasks do require some measure of dexterity. For those, a pincher add-on for the lift has been designed: part of that pincher is shown in Fig. 1. The pincher will be described in detail in a future installment of this series. For now, let's concentrate on the basic fork-lift design.

Mechanical overview

Our intention was to provide a rugged and reliable workhorse unit. The lift assembly has been designed to lift 10 -pound loads from floor level to the top of a $32-$ inch-high table at a rate of 3 inches-persecond. The overall height of the assembly described is 43 inches. Exactly the same construction techniques can be used to build smaller (or larger) lifts.

Linear ball-bearing slides are used for the lift to preserve the efficiency of the system. Because of the way cantilever loads are coupled to the bearings. friction

STEVEN E. SARNS

FIG. †-THIS FORK-LIFT DESIGN can do almost as much as a multi-jointed arm, but with higher lifting capacity and at a lower cost. For greater dexterity, the pincher shown can be added. That pincher, part of which is shown here, will be described in detail in an upcoming installment of this series.

FIG. 2-THE ROBOT ARM can be fabricated using the mechanical drawings shown here
could cause the required lifting force to become several times the total weight of the load on the lifting forks if sliding bearings were used. That would reduce the lifting capacity significantly. A chain drive is used to handle forces of 10 to 20 pounds without slipping and without any uncertainty about the lift position. The steel ladder-chain used is rated at 55 to 90 pounds tensile load. The drive motor is mounted at the top so that the lifting load is applied to its shaft and bearings directly (a ball-bearing version of that motor is desirable for heavy use). A potentiometer used for position-sensing is placed at the bottom of the chain loop as an idler; when it is mounted there, little load is placed on the potentiometer.

As with the rest of the robot project, the mechanical and electrical details cover our implementation of the arm. There are many other ways that the same results could be achieved. If you wish to change
the design to accommodate a specific application, to incorporate an improvement, or to use components you have on hand, you may do so

Note that much of the mechanical design of the arm can be credited to Spectron Engineering, and they provided the prototype on which this article is based. Further, Spectron is offering for sale the complete arm assembly. See the Sources box for more information.

Electronics overview

The electronics required to operate the arm are quite straightforward. We will use the robot's RERBUS expansion bus to communicate to a quasi-analog servo positioner. All the computer must do is to write the desired position of the arm to the servo circuit and that circuit will do the rest. The servo circuit also allows the computer to read back the position of the arm for analysis and direct control.

Arm design

The heart of the arm is the two linear ball-bearing slide units. Those are $1000-$ mm long, with approximately 35 inches of travel available. Our first task is to select the ladder chain-and-sprockets that move the carriage along those linear slides. We must select a sprocket for the potentiometer that will allow at least 35 inches of chain travel in ten turns of the sprocket, or 3.5 inches-per-turn. The ladder chain is $1 / 4$-inch pitch. Expressing 3.5 inches in terms of pitch length:

$$
3.5 \text { inches } \times \underset{\text { (exactly) }}{4 \text { teeth/inch }}=14 \text { teeth }
$$

In other words, if our potentiometer sprocket has 14 teeth, in 10 turns it will displace 35 inches of chain. We select the next larger sprocket, 15 teeth, resulting in a total chain travel of:

[^4]

FIG. 3-THIS DETAIL DRAWING shows the ladder-chain drive system.

The extrat 2 inches of chatin travel will not he used and gives us a margin of error (\pm $1 / 4$ turn) in the event of some misalignment of the potentiometer sprocket during the assembly:

The motor used to drive the chain is any

PARTS LIST

All resistors $1 / 4$ watt, 5%, unless otherwise noted
R1-R7, R9-100,000 ohms
R8-220 ohms
R10-47,000 ohms
R11-1 ohm, 1 watt
R12-10,000 ohms, 10 -turn linear potentiometer

Semiconductors

IC1-DAC0832 digital-to-analog converter
1C2-74LS138 decoder
IC3-LM324 quad op-amp
IC4-UDN2952W motor driver
D1, D2-1N914 diode
Other components
J1-26-conductor ribbon-cable connector
TST-5-position terminal strip
MOT1-12-volt motor with attached gearhead (see text)
Miscellaneous: Perforated construction board, wire, solder, mechanical components (see text), etc.
small DC motor with an attached gearhead. The motor may be rated from 12- to 36 -volts DC. Using a motor rated at 12 volts will produce approximately twice the rated output, and using one rated at 36 volts will produce approximately $2 / 3$ rated output. The only problem with using un-der-rated motors is heat build-up. Overheating should not be a problem if your applications call for a low duty cycle - the motor is never on for long, and is off most of the time. Assuming 3000 rpm and a $65: 1$ gearhead, the lifting speed will he:
$(3000 \mathrm{rpm} / 60-\mathrm{sec} / \mathrm{min}) / 65=0.77 \mathrm{rev} / \mathrm{sec}$ at sprocket
We can choose the lifting speed by select ing the sprocket size for the motor:

$$
\begin{aligned}
0.77 \mathrm{rev} / \mathrm{sec} & \times 10 \text { teeth } \times 0.25 \mathrm{inch} / \text { tooth } \\
& =1.9 \mathrm{inch} / \mathrm{sec}
\end{aligned}
$$

Other speeds can be calculated by plugging in the appropriate sprocket size. For instance, using a 15 -tooth sprocket will give us a lifting speed of $0.77 \times 15 \times$ $0.25=2.9$ inches-per-second, or 15 teeth $\times 0.25$ inches/tooth $=3.75$ inches-perrevolution.

Note that as you increase the lifting rate the lifting capacity (in pounds) will he decreased. We have selected the $15-$ tooth design for more load capacity.

SOURCES

The complete arm assembly can be purchased from Spectron Engineering, 1342 West Cedar Ave., Denver, CO 80223; (303) 744-7088. The cost is $\$ 300$ plus $\$ 8$ shipping. Colorado residents add appropriate sales tax. The assembly includes the following: two $1000-\mathrm{mm}$ linearbearing assemblies, two cross members, carriage plate, robot end cover, drive block, chain, motor, sprockets, 10 turn potentiometer, servo positioner, cables, and connectors.
Stock Drive Products, Division of Designatronics, Inc. 2101 Jericho Turnpike, New Hyde Park, NY 11040, (516) 328-0200, can supply the $15-100$ th $1 / 4$-inch pitch sprocket (part number 6T7-2515) and the $1 / 4$-inch ladder cabin (part number $6 \mathrm{C} 88-25$). Contact them directly for pricing, shipping, or other information.
The $1000-\mathrm{mm}$ linear ball-bearing slides are manufactured in Japan by T.H.K. Lid. They can be purchased from Bearing Engineers, Inc., 6009 Bandini Blvd., Los Angeles, CA 90040; (213) 754-9660 Contact them directly for pricing, shipping, and other information. Ask for part number FBW $50110 \mathrm{~F}+1000 \mathrm{~L}$.
The Brevel motor, part 715-980155, can be purchased from Johnstone Supply, 930 Wyandot, P.O.Box 4605, Denver CO 80204: (303) 573-5626. Contact them for pricing and shipping.

R-E

Turning our attention to the motor, the 15-tooth sprocket has a chain radius of approximately 0.5 inches. In order to lift 10 pounds, we will require a motor whose shaft can deliver a torque of 0.5 inches x 10 pounds $=5$ pound inches.

We have chosen a Brevel 715-980155 gearhead 12 -volt motor. The motor will be run at 24 volts, hut that is not a problem because the motor will be subjected to a low duty cycle. The motor has a starting torque rating of 40 pound inches, which means that it can lift 40 pound inches $/ 0.5$ inches $=40$ pounds. Its running torque is rated at 13 pound inches at 40 rpm . which means it can lift 26 pounds at a lifting speed of ($40 \mathrm{rev} / \mathrm{min} / 60 \mathrm{sec} / \mathrm{min}) \times 3.75$ inches $/$ rev $=2.5$ inches $/$ second.

We can assume that the motor will deliver approximately twice the calculated performance if we run it at 24 volts. However, the servo circuit will limit the current drawn by the motor to approximately one ampere. That effectively limits the lift torque to about 10 pounds.

Arm construction

The arm can be built following the plans shown in Fig. 2: details for several sections of that drawing are shown in Fig. 3. The upper and lower cross-members can be made from aluminum plate, channel, or angle extrusion. Note that channel or angle form-factors are stronger than that of flat plate in resisting iwisting

FIG. 4-THE SERVO CONTROLLER positions the carriage plate without RPC supervision.
forees imposed by off-center loads and provide additional mounting surfaces for future projects. Mount the motor on the upper cross-member so that the shaft is offset to the top, and secure it to the face of the cross-member using 10-32 flat head serews. The potentiometer should be mounted at the bottom of the lower crossmember. When mounting, use double nuts or extra washers so that the mounting bushing extends only $1 / 16$-inch beyond the mounting nut. Installing the motor and potentiometer as described will allow for the maximum possible travel of the linear bearings with a minimum overhang of the cross-members

The cross-members are mounted to the back of the linear bearing tracks. Those tracks are part of the $1000-\mathrm{mm}$ linear bearing assemblies, which can be purchased from the company mentioned in the Sources box; they are also provided with the complete arm assembly that was mentioned previously.

Next. mount the carriage plate to the front of the sliders with 10-32 screws. The carriage plate should slide over the entire
length of the tracks and overlap the motor mount in the end position. If the carriage plate jams, correct the problem by readjusting the mounting screws. Note that the type of slide bearings used in this assembly may bind somewhat, particularly when unloaded. But under load, the bearings provide low friction and long operating life.

The sprockets should now be mounted on the motor and potentiometer. They are positioned with the hub outward so that the working load is kept close to the bearings. The set screws on the sprockets have a bad habit of work ing loose, so seal them after installation with nail polish, Lactite. etc.

Check to be sure that the carriage clears the sprockets and shafts of the motor and potentiometer. Install washers behind the carriage plate to move it away from the sprockets if you have an interference problem. In some instances, you may have to saw off the ends of the motor and potentiometer shafts to achieve elearance.

Next, turn the potentiometer fully clock wise. Use a piece of tape to hold it in
that position until the chain installation is complete. Note that if the potentiometer is not positioned properly the full carriage travel will not be available; or worse, the potentiometer stops can be damaged if the full power of the motor is applied to them. Thread the chain over the motor and potentiometer sprockets, open it, remove enough links so that it is the correct length, and reassemble the chain. Move the carriage all the way to the top of the assembly and attach it to the chain via the drive block. Be sure to thread the chain so that it is inside the block; i.e., closer to the centerline.

Arr alternate to closing the chain into an endless loop is to connect the ends using a spring. Doing so serves to eliminate backlash from chain slack and lessens the load on the potentiometer. However, under heavy loads, the spring may allow the chain to become slack, allowing slippage at the sprockets. Although usually that is not a problem, slippage can be eliminated entirely by not using a spring.

The lifting tines of the fork lift are formed using 8- to 10 -inch steel Lbrackets. You will probably need to drill some extra holes to allow you to mount the bracket to the carriage plate. If you wish, you can add the holes in such a way to allow the brackets to extend below the slide bearings and reach the floor. Mount the tines to either the outer or inner row of carriage-plate holes to accommodate the width of your anticipated loads.

Attach a 26 -conductor ribbon cable to the RERBUS interface on the control board, and lead the cable out through the bottom of the robot's body. Finish up by mounting the arm assembly on the robot's end cover using four 6-32 screws. In our implementation, we split that end cover into two sections to allow for casy aecess to the fastening nuts and the electronics package, which is mounted on the forward bulkhead

Arm electronics

The control system for the arm is straightforward. Once notified of the final position for the carriage plate, the system will move the plate to that position without further attention from the Robotic Personal Computer (RPC).

A schematic of the control system is shown in Fig. 4. After determining where the carriage plate should be positioned, the RPC writes a position value into the Digital-to-Analog Converter (D)CC). The quasi-analog servo system takes over and begins slewing the motor toward the selected position. When the voltage fed back from the potentiometer is equal to the voltage output from the DAC, the system hnows that the selected position has been reached and the motor is turned off. All during that time the computer is free to begin analyzing the next required motion. continued on page 74

ROBERT GROSSBLATT
if you had to single out one area in the semiconductor industry as the most competitive, it would have to be the memory market, because the advances made in electronics invariably put increased pressure on memory designers to produce IC's that are faster, smaller physically, have denser storage, and are easier to use.

Unfortunately, it's a lot easier to build a wish list than it is to build an IC. As a result of the market pressure, memory development split into two separate parts, each with different design goals. One group aimed at increased storage capacity while the other tackled the problem of permanence. The result of the dichotomy has been the production of two very different kinds of memories: volatile and non-volatile

By using a single-transistor storage cell, address multiplexing, and geometries of under 2 microns, 256 K -bit DRAM's are now so commonplace that their price in single units is less than $\$ 3$. Unfortunately, although DRAM's (Dynamic RAM's) may be able to store a lot of data in a small package, they're not the easiest chips to use. Because only one transistor is used for storage, data has to be refreshed every 2 milliseconds, and any application using DRAM's must have refresh circuitry. Address multiplexing may cut down the size of the package, but it means that external gating has to be used to properly address the IC. And it goes without saying that permanent-non-volatile-data retention is completely impossible

Although the designers who tackled the problem of volatility wanted to keep storage capacity as large as possible, they also wanted to make sure it was permanent as well. The first consequence of a decision to make non-volatility a design goal was to concentrate on the development of CMOS static RAMs. The inherent low-
power requirements of CMOS technology meant that non-volatility could be faked by using a small battery to provide standby power. That approach produced the 5IOI, a 256×4 RAM that could be toggled into a "sleep" mode, in which it would retain data at a current drain measured in the low microamps. Modern versions of that design, such as the 6264 , have the same kind of low-power dataretention feature, but the amount of storage capacity has been increased to 64 K bits $(8 \mathrm{~K} \times 8)$.

Non-volatile memory

But standby batteries are a poor substitute for real permanence. Battery life is often an unknown variable and even a modern lithium cell can't be considered absolutely reliable when the temperature or other operating parameters are outside predefined limits. True non-volatility in a read/write memory first appeared in the late 1970's in the form of EPROM's (Erasable Programmable Read Only Memories). The early IC's were hard to use, required several voltages, and had the nasty habit of self-destruction if they weren't used exactly according to specifications.
As EPROM's developed, they became so reliable and easy to use that they began replacing bipolar PROM's as the memory of choice. Programming simplicity, sec-
ond-sourcing, storage capacity, and cost-per-bit have made EPROM's an attractive answer to the problem of non-volatility. But EPROM's still have major draw-backs-they can only be bulk-erased (cells cannot be erased individually), and erasure has to be done by narrow-band ultra-violet light (about 2500 Angstroms).

Electrical erasure

EEPROM's (Electrically Erasable Programmable Read Only Memories) appeared on the market at about the same time as EPROM's but never became as popular in the consumer market. Although they have several major advantages over EPROM's, they're more than twice as expensive. The best way to think of an EEPROM is as an EPROM that can be erased in-circuit under program control. Although there are some restrictions in erasing and programming an EEPROM, the fact that it can be done at all makes them an interesting solution to many circuit and design problems

Storage in an EEPROM is much the same as it is in an EPROM-a charge stored on a polysilicon floating gate What makes the EEPROM different is the way charges are either moved to, or taken from the cell. Figure 1 is a representation of an EEPROM storage cell. The three separate gates are completely surrounded

FIG. 1-A FLOATING-GATE EEPROM is built on a silicon substrate. The gates are insulated by silicon dioxide.

b
and gate 2, and the other between gate 2 and gate 3

In order to discharge the floating gate, it must be held near ground when the programming voltage is applied. Since gate 1 is also tied low, the clectrons will move from gate 2 to gate 3 and the negative charge will be removed from the floating gate

It takes more than the structure that we just discussed to produce a working EEPROM cell. A means must be added to steer the charges to the floating gate, and switching circuitry has to be added to let the cell's operation be handled by external control signals. Figure 3 shows an operational cell. Notice that the floating gate is only capacitively connected to A, rest of the circuit.

The two lines that control the data written to the cell are the sir line and the $v_{p p}$ line. If a low is put on the bit line and the programming voltage is applied to $\mathrm{v}_{\mathrm{n}}, \mathrm{Q}, \mathrm{Q}$ turns off and floats the junction of C3 and C 4 . Since their combined capacitance is made to be much larger than the effective capacitance between gate 1 and gate 2 , the floating gate (2) will follow the programming voltage and Fowler-Nordheim tunneling will take place, causing a negative charge to accumulate on the floating gate. If the bit line is held high when V_{Pp}, is energy level will increase to the point where the trapped electrons will be excit ed enough to leave the gate and migrate through the insulator.

It's also possible to force electron migration by applying a high electric field. If the field is strong enough, the electrons will tunnel through the silicon dioxide--a phenomenon first described by Fowler and Nordheim in 1928. The Fowler-Nordheim tunneling is the basic principle used to store and remove charges from the isolated gates in EEPROM cell.

FIG. 3-TO WRITE TO AN EEPROM the r/w line is held low. It is held high for a read.

Figure 2 shows what happens when you write to an EEPROM cell. If gate 3 is tied to a large enough voltage, and gate I is grounded, Fowler-Nordheim tunneling will take place and electrons will migrate through the siticon-dioxide insulator from gate 1 to gate 2 (the floating gate), causing it to be charged negatively. The applied electric field causes the gates and insulating material to act as if two capacitors were present there-one between gate I

$\overline{C E}$	$\overline{O E}$	$\overline{W E}$	MODE	IO	POWER
L	L	H	READ	$\mathrm{D}_{\text {OUT }}$	ACTIVE
L	H	L	WRITE	$\mathrm{D}_{\text {IN }}$	ACTIVE
H	X	X	STANDBY	HiZ	STANDBY
X	L	X	STANDBY	-	-
X	X	H	STANDBY	-	-

b
FIG 4-THIS IS THE BLOCK DIAGRAM for an X2861A $2 \mathrm{~K} \times 8$ EEPROM.
applied, the $\mathrm{C} 3 / \mathrm{C} 4$ junction will be grounded, and since C3 is much larger than the effective capacitance between gate 2 and gate 3 , the floating gate will be held near ground as well. The electrons will migrate from the floating gate to gate 3 and leave the floating gate with a positive charge.

The process of adding and removing electrons to the floating gate is never 100% efficient. As a result, each write operation leaves the floating gate less able to retain a stored charge. That is an inherent characteristic of the storage mechanism, and although it can be minimized, it can't be eliminated altogether. Most EEPROM's are guaranted to be able to successfully perform 10,000 write operations without any noticeable degradation of data storage-and that's a lot of writes.

One voltage source

Like the carly EPROM's, early EEPROM's were multivoltage components and needed support circuitry to work properly. V_{p} (about 21 volts) had to be generated independently, latches were needed to hold the data and address lines stable during addressing, and strict timing was needed to read or write data. But just as with most IC families, considerable improvements have been made. Figure 4 is a functional diagram of a modern EEPROM, Xicor's $2816 A$, a $2 \mathrm{~K} \times 8$ memory that incorporates atl the features found in modern EEPROM's.

The first thing you should notice is that the pin configuration is the same as the industry-standard pinout for the 2716 EPROM. As you would expect. the readcycle timing is also similar to the 2716 , so the 2816 is socket-compatible with the EPROM. A more interesting comparison is that the 2816 is both pin and socket compatible with the $0 / 162 \mathrm{~K} \times 8$ static RAM. Since the Xicor part only uses a 5 volt supply, it's possible to literally replace a $6 / 16$ with a $28 / 6$. The EEPROM will use more power than the low-power 6/16, but that's not a high price to pay for real non-volatility. And the amount of current needed by the 2816 can be reduced to 50 mm by bringing the ce line high if the chip isn't being used by the system.

Since the 21 -volt programming pulsē is generated internally and a pair of tatches in the IC hold the data and address during a write, the operation of the IC is essentially identical to that of a static RAM. All of the IC's timing is done automatically by internal circuitry, and the outputs three-state whenever the chip is busy, leaving the bus free for other purposes. You can get a better idea of how the chip works by examining the truth table. shown in Fig. 4.

EEPROM's are currently available with the same capacity found in the more popular EPROM's, including the 1-megabit $(256 \mathrm{~K} \times 8)$ size. And even the power-

FIG. 5-A NOVRAM CELL SCHEMATIC. Transistors Q3-Q8 form a conventional static-RAM cell.
consumption problem is being solved. Since EEPROM's store their charges on a floating gate that is capacitively coupled to the rest of the chip, EEPROM's are perfectly suited to being made with CMOS technology. Xicor, and other companies such as Seeq and National Semiconductor, are starting to deliver sample quantities of CMOS EEPROM's.

Since it's so casy to write to an EEPROM, they are well-suited for powerfailure protection. A small circuit can watch the powerline, and if the voltage falls below a predetermined level an automatic write is done to save system data. The restriction as to the number of writes would seem to be a problem, but the answer can be found in an offshoot of EEPROM technology- NOVRAM's.

The NOVRAM

NOn-Volatile RAM's (NOVRAM's) are also known as shadow RAM's. Their construction can be understood from Fig. 5. The EEPROM cell we described carlier is linked to a regular static RAM cell. The six transistors in the standard static RAM cell, Q3-(Q8, link to the two-transistor EEPROM cell. In that way, each static RAM cell is backed up, or shadowed, by an EEPROM cell. The advantage of using a NOVRAM—as opposed to an

EEPROM-in a working circuit has to do with speed and write cycles.

EEPROM's, just like EPROM's, are not particularly fast parts. Even the fastest EEPROM has about a 10 -millisecond write cycle, which is made a bit more bearable because of the EEPROM's internal latches. A write may be slow but at least it won't tie up the system bus. Any application that has to write data faster than that will have to take some other route for emergency data-backup. And of course, there are only a certain number of guaranteed write cycles over the normal lifetime of the IC.

Those problems are solved, at a price, by NOVRAM's. Data can be written to the static-RAM half of a NOVRAM at much higher speeds. A typical NOVRAM has a 300 -nanosecond write time and, of course, there are an unlimited number of writes. After all, the front end of the NOVRAM is ordinary static RAM, so it's no surprise that it operates at microprocessor speeds.

The EEPROM part of the NOVRAM can only be accessed in one of two ways. The static-RAM image can be dumped to the EEPROM with a store command, and the data in the EEPROM can be loaded in the static RAM with a recall command. A block diagram of Xicor's

$\overline{C S}$	$\overline{\text { WE }}$	$\overline{\text { RECALL }}$	STORE	I/O	MODE
H	X	H	H	Hi-Z	NOT SELECTED
L	H	H	H	$D_{\text {OUT }}$	READ
L	L	H	H	$D_{\text {IN }}$ HIGH	WRITE A"1"
L	L	H	H	$D_{\text {IN }}$ LOW	WRITE A"0"
X	H	L	H	$H i-Z$	RECALL
H	X	L	H	$H i-Z$	RECALL
X	H	H	L	$H i-Z$	STORE
H	X	H	L	$H i-Z$	STORE

b

FIG. 6-THE BLOCK DIAGRAM and truth table for a X2212 NOVRAM
$22 / 2$, a 256×4 NOVRAM is shown in Fig. 6-a; its truth table is shown in Fig. 6-b.

The larger size of a NOVRAM cell compared to an EEPROM cell means that NOVRAM's will have smaller storage capacities. In addition, their cost per bit is going to be much greater. Which one you should use will depend on your application. In general, EEPROM's are better suited for off-line work and NOVRAM's are fast enough to work as an on-line component. If you plan on doing a lot of reads with only occasional writes, EEPROM's are your best bet; but if you have to write data frequently you should look into NOVRAM's. Even though it will take more IC's to build up to the required memory size, they will still be more costeffective than a handful of regular memo ry IC's.

Snapshots and DIP's

Two ideal uses for a NOVRAM are for system snapshots in the event of a power failure, and as replacements for DIP switches. The circuit shown in Fig. 7 is one approach for the design of a powerloss trigger device for a snapshot circuit. It operates on DC, but can be adapted for use with an AC-powered circuit

A trigger device such as the one in Fig.

7 is needed because the store input of NOVRAM's such as Xicor's $22 x x$ family wants to sec a negative TTL trigger pulse at least 100 -nanoseconds long. As soon as the pulse is received, an automatic store operation transfers the static RAM image, bit for bit, into the EEPROM. The write to EEPROM takes 10 -milliseconds, so any detection circuit that produces the store pulse has to tread a fine line. If it has too high a trip point there's a good chance of producing spurious pulses, and if it's set too low there won't be enough time for the NOVRAM to complete the store. Since the minimum operating $V_{C C}$ for a

FIG. 7-A DC POWER FAILURE detector that can be used for a NOVRAM snapshot circuit.

NOVRAM is 4.5 volts. the store has to be triggered at a voltage level that can guarantee a 10 -millisecond delay before $V_{C C}$ drops to 4.5 volts.

The values shown in Fig. 7 assume a 5 volt regulator being fed an unregulated 8 volts. The trip point is set to be 6.7 volts by a 6 -volt Zener diode and the 0.7 -volt base-emitter drop in the transistor. The filter capacitor (Cl) helps slow down the voltage drop in the event of a failure

If you want to put together a circuit that

FIG. 8-A NOVRAM DIP SWITCH requires a single decoder. NOVRAM's are available that can emulate 4096 mechanical DIP switches.
will do the same thing for an AC-powered supply, you can detect the zero crossing on the AC -line and feed that to a missingpulse detector. An easier way would be to use the circuit in Fig. 7. Even if your application has no use tor a regulated DC voltage you can still use it to power the NOVRAM, and just think of the regulator and the associated components as part of the detection circuit

Using NOVRAM's in place of DIP switches eliminates a potentially noisy and troublesome mechanical component with an IC. As an added bencfit, fewer external parts are needed as well. As shown in Fig. 8, a single decoder (ICI) is all that's needed to set up a NOVRAM as an electronic DIP. The three NOVRAM control pins are connected to the outputs of a 4051 one-of-eight decoder set to operate in the digital mode. Using only three of the 4051 's output ports- $\mathrm{QO}, \mathrm{QI}, \mathrm{Q} 3-$ will let the system access any one of the switch settings stored in the NOVRAM Since Xicor makes NOVRAM's as large as 512×8, (the $X 2004$). you can pach 4096 separate DIP switches in a single IC: more if you use additional IC's

Although EEPROM technology has been around for more than 10 years, cost. complexity, and capacity have forced them to take second place to the more popular EPROM's. That may change in the near future as manufacturers continue to refine EEPROM fabrication methods and produce new IC's whose utility, reliability, and versatility compensate for the dwindling differences in cost

Many mail order houses now stoch EEPROM's and NOVRAM's. It's well worth your time to get your hands on some parts and their data sheets, and start learning just how useful those IC s can be. R-E

WORKING WITH TRIACS AND SCR's

Twenty-eight practical SCR and Triac circuits.

RAY MARSTON

FIG 1-AC POWER SWITCH, AC triggered

FIG 2-AC POWER SWITCH, DC triggered

LAST TIMIE WE DISCUSSEID BASIC SCR AND Triac theory, paying particular attention to the principles of synchronous and asy nchronous triggering. (See RadioElectronics, September 1987.) This time we ll present a number of practical circuits for which the user need only select an SCR or Triac having suitable voltage and current ratings. Let's start off by looking at several Triac circuits that can be used to control some line-voltagepowered devices

Asynchronous designs

As explained last time, a Triac may be triggered (turned on) either synchronously or asynchronously. A synchronous circuit always turns on at the same point in each half-cycle, usually just after the zero-crossing point, in order to minimize RFI. An asynchronous circuit does not turn on at a fixed point, and the
initial current surge generated during turn-on at a non-zero point of the AC cycle can generate significant RFI. Triac turn-off is automatically synchronized to the zero-crossing point, because the device's main-terminal current falls below the minimum-holding value at the end of each half-cycle

Figures $1-8$ show a variety of asynchronous Triac power-switching circuits. In Fig. 1, the Triac is gated on (whenever Sl is closed) via the load and RI shortly after the start of each half-cycle; the Triac remains off when S 1 is open. Note that the trigger point is not linesynchronized when Sl is closed initially: however, synchronization is maintained on all subsequent half-cycles.

Figure 2 shows how the Triac can be triggered via a line-derived DC supply. Capacitor Cl is charged $10+10$-volts DC (via R1 and D1) on each positive half cycle of the line. The charge on Cl is what triggers the Triac when Sl is closed. Note that all parts of the circuit are "live," and that makes it difficult to interface to external control circuitry.

Figure 3 shows how to modify the previous circuit so that it can interface with external control circuitry. Switch S1 is simply replaced by transistor Q2, which in turn is driven from the photo-transistor portion of an inexpensive optocoupler. The LED portion of the optocoupler is driven from a 5 -volt DC source via R 4 . Opto-couplers have typical insulation potentials of several thousand volts, so the external circuit is always fully isolated from the line.

Figure 4 shows an interesting variation of the previous circuit. Here the Triac is AC -triggered on each half-cycle via Cl R1, and back-to-back Zeners D5 and D6 Note that Cl 's impedance determines the magnitude of the Triac's gate current

The bridge rectifier composed of DI-D4 is wired across the D5/D6/R2 network and is loaded by QI. When Q1 is off the bridge is effectively open, so the Triac turns on shortly after the start of each half cycle. However, when Q2 is on, a nearshort appears across D5/D6/R2, thereby

FIG 3-OPTICALLY ISOLATED AC power switch, DC triggered.

FIG 4-OPTICALLY ISOLATED AC power switch, AC triggered

FIG 5-AC POWER SWITCH with transistor-aided DC triggering.

FIG 6-TRIGGER THE PREVIOUS CIRCUIT with an optocoupler.
inhibiting the Triac's gate circuit, so it remains off.

Figures 5 and 6 show several hays of triggering the Triac via a transformer-derived DC supply and a transistor-aded suitch. In the Fig. 5 circuit, QI and the Triac are both turned on when SI is closed, and off when it is open. In practice, of course, SI could be replaced by an electronic switch. enabling the Triac to be operated by heat, light, sound, time, etc. Note, however, that the whole of the Fig. 5 circuit is "live." Figure 6 shows how to modify the circuit so that is is suitable for use with an optocoupler.

To complete this section. Figures 7 and 8 show several ways of triggering a Triac from a fully isolated external circuit. In both circuits. triggering is obtained from an osciltator built around unijunction transistor QI. The UJT operates at a frequency of several kHz and feeds its output pulses to the Triac's gate via pulse transformer TI, which provides the desired isolation. Also in both circuits, S1 can easily be replaced by an electronic switch.

In the Fig. 7 circuit. Q2 is wired in series with the UJT's main timing resistor. so the UIT and the Triac will turn on only when S I is closed. In the Fig. 8 circuit. Q2 is wired in parallel with the UJT's main timing capacitor, so the UJT and the Triac turn on only when SI is open.

Synchronous designs

Figures 9-18 show a number of powerswitching circuits that use synchronous triggering.

Figure 9 shows the circuit of a synchronous line switch that is triggered near the zero-voltage crossover points. The Triac's gate-trigger current is obtained from a 10 -volt DC supply that is derived from the network composed of R1. DI, D2, and C1. That supply is delivered to the gate via Q I, which in turn is controlled by SI and the zero-crossing detector composed of Q2, Q3, and Q4.

Transistor Q5 can only conduct gate
current when SI is closed and $\mathrm{Q}+$ is off. The action of the zero-crossing detector is such that either Q2 or Q3 furins on whenever the instantancous line voltage is positive or negative by more than a few volts, depending on the setting of R8. In either case. Q4 turns on vial R 3 and thereby inhibits Q5. The circuit thus produces minimal RFI.

Figure IO shows how to modify the previous circuit so that the Triac call only turn on when SI is open. In both circuits note that, hecause only a narrow pulse of gate current is sent to the Triac, average consumption of DC current is very low (one milliampere or so). Also note that S I cam be replaced by an electronic switch. 1o give automatic operation via heatt, light. time. etc. or by an optocoupler. to provide full isolation.

A number of special-purpose synchronous zero-crossover Triac-gating IC's are available. the best-know examples being the CA3059 and the TDAlO2t. Both devices incorporate line-derived DC power-supply circuitry, a zero-crossing detector. Triac gate-drive circuitiy, and a high-gain diflerential amplifier/gating network

Figure II shows the internal circuitry of the CA3059, logether with its minimal extemal comections. AC line power is applied to pin 5 via a limiting resistor

FIG 7-TRANSFORMER-COUPLED AC power switch. The Triac turns on when S 1 is closed.

FIG 8-ISOLATED-INPUT AC power switch. The Triac turns on when S1 is open.

FIG 9-ZERO-CROSSING synchronous line switch. The Triac turns on when S1 is closed.

FIG 10-ALTERNATE synchronous line switch. The Triac turns on when S1 is open.

FIG 11-THE CA3059'S internal circuit and nec essary external components.
(R_{S}), which should have a value of 12 K at 5 W for 117 -volt use. Diodes D1 and D2 function as back-to-back zeners that limit the potential on pin 5 to ± 8 volts. On
positive half-cycles, D7 and D13 rectify that voltage and generate 6.5 volts across external capacitor Cl. That capacitor stores enough energy to drive all internal
circuitry. It also provides adequate drive to the gate of the Triac. and a few mA of current are available for powering external circuitry.

Bridge rectifier D3-D6 and transistor Q1 function as a zero-crossing detector, with Q1 being driven to saturation whenever the pin-5 voltage exceeds -3 V . Gate drive to an external Triac can be provided (via pin 4) from the emitter of the $\mathrm{Q} 8 / \mathrm{Q} 9$ Darlington pair; that current is available only when Q7 is off. When Q I is on (i. e., the voltage at pin 5 exceeds -3 V), Q6 turns off through lack of base drive, so Q7 is driven to saturation via $R 7$, so no current is available at pin 4.

The overall effect is that gate drive is available only when pin 5 is close to zero volts. When gate drive is available, it is delivered as a narrow pulse centered on the crossover point; the gate-drive current is supplied via Cl.

The CA3059 incorporates several transistors (Q2 Q5) that may be configured as a differential amplifier or a voltage comparator. Resistors R4 and R5 are externally available for biasing the amplifier. Q4's emitter current flows via the base of Q1; the configuration is such that gate drive can be disabled by making pin 9 positive relative to pin 13. The drive can also be disabled by connecting external signals to pin 1, pin 14, or both.

Figures 12 and 13 show how the CA3059 can provide manually-controlled zero-voltage on/off Triac switching. Each circuit uses a switch (S) to enable and disable the Triac's gate drive via the IC's differential amplifier. In the Fig. 12 circuit, pin 9 is biased at $\mathrm{V}_{\mathrm{CC}} / 2$ and pin 13 is biased via R2, R3, and S1. The Triac turns on only when Sl is closed.

In Fig. 13, pin 13 is biased at $\mathrm{V}_{\mathrm{CC}} / 2$ and pin 9 is biased via R2, R3, and S1. Again, the Triac turns on only when S 1 is closed. In both circuits, SI handles maximums of 6 volts and 1 mA . In both circuits C 2 is used to apply a slight phase delay to pin 5 (the zero-voltage detecting terminal); that delay causes gate pulses to be delivered after the zero-voltage point, rather than straddling it.

Note that, in the Fig. 13 circuit, the Triac can be turned on by pulling R3 low, and that it can be turned off by letting that resistor float. The circuits shown in Fig. 14 and Fig. 15 illustrate how that ability can increase the versatility of the basic circuit. In Fig. 14, the Triac can be turned on and off by transistor QI, which in turn can be activated by any low-voltage circuit, even CMOS devices. And Fig. 15 shows how to use the circuit with an optocoupler.

Figure 16 shows how the Signetics TDAIO24 can be used in a similar circuit to provide optically coupled zero-voltage Triac control.

To complete this section, Fig. 17 and Fig. 18 show several ways of using the

FIG 12-ZERO-VOLTAGE line switch built from the CA3059.

FIG 13-ALTERNATE CA3059 zero-voltage switch.

FIG 14-TRANSISTOR-CONTROLLED CA3059 switch.

CA3059 so that the Triac operates as a light-sensitive dark-operated power switch. In both designs the IC's built-in differential amplifier is used as a precision voltage comparator that turns the Triac on or off when one of the comparator input voltages goes above or below the other comparator input voltage.
Figure 17 is the circuit of a simple darkactivated power switch. Here, pin 9 is tied to $\mathrm{V}_{\mathrm{CC}^{2}} 2$ and pin 13 is controlled via the R2-R5 resistive string. In bright light, photocell R4 has low resistance, so the voltage at pin 9 excceds that at pin 13, and the Triac is disabled. In darkness, the photocell has a high resistance, so the pin

13 voltage exceeds that at pin 9 , and the Triac is enabled. The circuit's switching point is set with R3.

Figure 18 shows how a degree of hysteresis or "backlash" can be added to the previous circuit. Doing so prevents the Triac from switching in response to small changes (passing shadows, etc.) in am bient light level.

FIG 15-OPTICALLY COUPLED CA3059 switch.

Electric-heater controllers.

A Triac can casily be used to provide automatic room-temperature control by using an electric heater as the Triac's load. and either thermostats or thermistors as the thermal feedback elements. Two

FIG 17-DARK-ACTIVATED zero-voltage switch.

FIG 18 -DARK-ACTIVATED zero-voltage switch with hysteresis.
methods of heater control can be used: automatic on/off power switching, or fully automatic proportional power control. In the former case, the heater turns fully on when room temperature falls be low a preset level, and it turns tully off when the temperature rises above that level

In proportional power control, the average power delivered to the heater is automatically adjusted so that, when room temperature is at the preset level, the heater's output power self-adjusts to precisely balance the thermal losses of the room.

FIG 16-OPTICALLY COUPLED TDA1024-based zero-voltage switch.

TAKE ANY ONE OF THESE HANDBOOKS - when you join the ELECTRONICS AND

- your one source for engineering books from over 100 different publishers
- the latest and best information in your field
- discounts of up to 40% off publishers' list prices

322/910

Publisher's Price \$110.00
ANTENNA ENGINEERING HANDBOOK, Second Edition
Edited by R. C. Johnson and H. Jasik

- 1,408 pages, 946 illustrations
- covers all types of antennas currently in use with a separate chapter devoted to each
- provides detailed data on physical fundamentals, operating principles, design techniques, and performance data
- up-to-the-minute infornation on antenna applications
- a must for those involved in any phase of antenna engineering

Publisher's Price $\$ 64.50$

STANDARD HANDBOOK OF

 ENGINEERING CALCULATIONS,
Second Edition

By T. G. Hicks

- 1,468 pages, 793 illustrations, 499 tables
- puts more than 1,100 specific calculation procedures at your fingertips
- every calculation procedure gives the exact, numbered steps to follow for a quick, accurate solution
- virtually all procedures can be easily programmed on your PC or calculator
- uses USCS and SI units in all calculation procedures

Publisher's Price $\$ 89.50$

TELEVISION ENGINEERING

 HANDBOOKEdited by K. B. Benson

- 1,478 pages, 1,091 illustrations
- packed with all the technical information today's engineer needs to design, operate, and maintain every type of television equipment
- extensive coverage of receivers, broadcast equipment, video tape recording, video disc recording, and the latest technological advances
- provides television system and industry standards for the U.S and other countries
- the most comprehensive book on the subject of television engineering

FOR ONLY \$14.95-VALUES UP TO \$110.00 CONTROL ENGINEERS' BOOK CLUB*

404/461

Publisher's Price \$82.50

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL
By J. T. Markus

- 1,264 pages, 3,666 circuit diagrams
- a handy, desktop reference with 103 chapters organized by "family" grouping
- filled with predesigned and use-tested circuits to save you production time and money
- includes concise summaries of all the recent applications notes, journal articles, and reports on each circuit, efficiently organized and indexed for the practicing engineer

Publisher's Price $\$ 89.00$

ELECTRONICS ENGINEERS'

HANDBOOK, Second Edition

By D. G. Fink and D. Christiansen

- 2,272 pages, 2,189 illustrations
- unrivaled for is completeness, authority, reliability and timeliness
- 80% new or extensively revised
- prepared by a staff of 173 expert contributors
- brings you more than 2,000 formulas and equations
- has over 2,500 bibliographic entries

4 reasons to join today!

1. Best and newest books from ALL publishers! Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.
2. Big savings! Build your library and save money, too! 'Savings range up to 40% off publishers' list prices.
3. Bonus books! You will immediately begin to participate in our Bonus Book Plan that allows you savings up to 70% off the publishers' prices of many professional and general interest books!
4. Convenience! 14-16 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and alternate selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection - or no book at all you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it for credit at the Club's expense.
As a Club member you agree only to the purchase of three additional books during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the three additional books.

FOR FASTER SERTICE IN ENROLLING CALL TOLL FREE 1-800-2-MCGRAW

FIG 19-THERMOSTAT-SWITCHED heater controller.

FIG 20-THERMISTOR-SWITCHED heater controller.

FIG 21-HEATER CONTROLLER with ther-mistor-regulated zero-voltage switching.

Because of the high power requirements of an electric heater, the circuit must be carefully designed to minimize RFI generation. The designer's two main options are to use either continuous DC gating or synchronous pulsed gating. The advantage of DC gating is that, in basic on/off switching applications, the Triac gencrates zero RFI under normal running conditions; the disadvanage is that the Triac may generate very powerful RFl as it is turned on. The advantage of synchronous gating is that no high-level RFI is generated as the Triac turns on; the disadvantage is that the Triac generates continuous low-level RFl under normal rumning conditions.
ligures 19 and 20 show several DCgated heater-controller circuits. In both cases the DC supply is derived via TI, DI, and Cl , and the heater can he controlled either manually or automatically via SI . The Fig. I9 circuit is turned on and off by the thermostat, depending on its temperature.

The Fig. 20 circuit, on the other hand, is controlled by Negative Temperature Cocfficeint (NTC) thermistor R7 and transistors Q1 and Q2. The network composed of R2, R3, R6, and R7 is used as a thermal bridge, and Q2 acts as the bridgebalance detector. Potentiometer R6 is adjusted so that Q2 just starts to turn on as the temperature falls to the desired level. Below that level, Q2, Q3, and the Triac are all fully on; above that level all three components are cut off.

Because the gate-drive polarity is al-

FIG 22-HEATER CONTROLİER with precision temperature regulation.
ways positive, but the Triac's main-termi nal cument alternates, the Triac is gated alternately in the +1 and +111 quadrants. and gate sensitivity varies tremendously hetween them. (See our discussion of gate sensitivity in the September issue.) Consequently, when the temperature is well below the prese level, $Q \mid$ is driven fully on. Therefore, the Triac is gated on in both quadrants, so it provides full power to the heater. However, when the temperature is very close to the preset value, Q1 is driven on "gently," so the Triac is
gated in the + I mode only, and the heater operates at half maximum power drive. The circuit thus provides fine temperature control.

Synchronous circuits

Figure 21 shows how a CA3059 can be used to build a synchronous thermistorregulated electric-heater controller. The circuit is similar to that of the dark-activated power switch of Fig. 17, except that the thermistor (R3) is used as the sensing clement. The circuit is capable of maintaining room temperature within a degree or so of the value set by R2.

To complete our discussion of heater controllers, Fig. 22 shows the circuit of a proportional heater controller that is capable of maintaining room temperature within $0.5^{\circ} \mathrm{C}$. In that circuit a thermistorcontrolled voltage is applied to the pin-13 side of the CA3059's comparator, and a repetitive 300 -mS ramp signal, centered on $\mathrm{V}_{\mathrm{Cr}} / 2$, is applied to the pin- 9 side of the comparator from astable multivibrator ICI.

The action of the circuit is such that the Triac is synchronously turned fully on if the ambient temperature is more than a couple of degrees below the preset level, or is cut fully off if the temperature is more than a couple of degrees above the preset level. When the temperature is within a couple of degrees of the preset value, however, the ramp waveform comes into effect and synchronously urns the Triac on and off once every 300 mS , with a $\mathrm{Mark} / \mathrm{Space}(\mathrm{M} / \mathrm{S}$) ratio that is proportional to the temperature differential.

For example, if the M / S ratio is $1: 1$, the heater generates only half of maximum

FIG 23-SIMPLE LAMP DIMMER.

FIG 24-IMPROVED LAMP DIMMER with gate slaving.

Lamp-dimmer circuits

A Triac can be used to make a lamp dimmer by using the phase-triggered power-control principles discussed last time. In that type of circuit, the Triac is turned on and off once in each line halfcycle, its M/S ratio controlling the mean power fed to the lamp. All circuits of that type require the use of a simple $L C$ filter in the lamp's feed line to eliminate RFI

The three most popular methods of obtaining variable phase-delay triggering

FIG 25-UJT-TRIGGERED zero-backlash lamp dimmer.

FIG 26 -SMART LAMP DIMMER controlled by a Siemens S566B.
power. and if the mark/space ratio is $1: 3$ it generates only one quarter of maximum power. The net effect is that the heater does not switch fully off, but generates just enough output power to match the thermal losses of the room precisely. As a result, the circuit provides very precise temperature control
are: (1) Diac plus RC phase-delay network; (2) line-synchronized variable-delay UJT trigger; (3) special-purpose IC as the Triac trigger.

Figure 23 shows the circuit of a Diactriggered lamp dimmer. A defect of that type of design is that it suffers from considerable control hysteresis or backlash.

FIG 27-UNIVERSAL-MOTOR light-duty speed controller.

FIG 28-SELF-REGULATING UNIVERSALMOTOR heavy-duty speed controller.

If the lamp is dimmed by increasing the R 2 's value almost to maximum, the lamp will not go on again until $R 2$ is reduced to about 80% of the former, at which it hurns at a fairly high brightness level. Backlash is caused because the Diac partiatly discharges Cl each time the Triac fires

Backlash can be reduced by wiring a 47 -ohm resistor in series with the Diac, to reduce its effect on Cl. An even better solution is to use the gate-slaving circuit shown in Fig. 24, in which the Diac is triggered from C2, which "copies" Cl's phase-delay voltage, but provides discharge isolation through R3

It backlash must be eliminated altogether, the UIT-rriggered circuit shown in Fig. 25 can be used. The UJT (QI) is powered from a 12 -volt IC supply built around Zener diode D2. The UJT is linesynchronized by the Q2-Q3-Q4 zerocrossing detector network, in which Q4 is turned on (thereby applying power to the UJT) at all times other than when line voltage is close to zero

So, shortly after the start of each halfcycle, power is applied to the UJT circuit via Q4, and some later time (which is determined by $\mathrm{R} 5, \mathrm{R} 8$, and (${ }^{(2)}$) a trigger pulse is applied to the Triac's gate via the UJT
Figure 26 shows how a dedicated IC, the Siemens S506B "Touch Dimmer, "can be used to build a smart lamp dimmer that can be controlled by several devices simultaneously: a touch pad. a pushbution switch, or an infrared link.
continued on page 74

WORKING WITH TRIACS

continued from page 7.3

The IC, which provides a phase-delayed trigger output to the Triac, provides both on/off and proportional output control.

To do so, the 5566 B incorporates conditioning circuitry that recognizes a brief input as a "change stage" command. In addition, a sustained input causes the IC to go into the ramp mode, in which lamp power slowly increases from 3% to 97% of maximum. After reaching maximum, it ramps downward to a minimum of 3%, and then again reverses.

The touch pad used with the circuit may be simple strips of conductive material; the operator is safely insulated from the line voltage via $R 8$ and $R 9$.

Universal motor controllers

Domestic applances are usually powered by a series-wound universal electric motor, so-called because they can operate from cither AC or DC power. In operation, that type of motor produces a back EMF that is proportional to the motor's speed. The elfective volage applied to that type of motor is equal to the applied voltage minus the back EMF. That results in some self-regulation of motor speed, because an increase in motor loading tends to reduce speed and back EMF, thereby increasing the effective applied voltage and causing motor speed to try to increase to its original value.
Most universal motors are designed to provide single-speed operation. A Triacbased phase-control circuit can easily be used to provide that type of motor with fully-variable speed control. A suitable circuit is shown in Fig 27.

That circuit is useful for controlling lightly-loaded appliances (food mixers, sewing machines, etc.). However, heavyduty tools (electric drills and sanders, for example) are subject to heavy load variations, and therefore require a circuit like the one in Fig. 28.

An SCR is used in that circuit as the control element; it feeds hall-wave power to the motor, which results in a 20% or so reduction in available speed and power. However, during the half-cycles when the motor is off, its back EMF is sensed by the SCR and is used to adjust the next gating pulse automatically.

The network composed of R1, R2, and DI provides only 90° of phase adjustment, so all motor power pulses have a minimum duration of 90° and provide very high torque. At low speeds the circuit goes into a "skip-cycling" mode, in which power pulses are provided intermittently, to suit motor-loading conditions. The result is that the circuit provides particularly high torque under low-speed conditions.

R-E

R-E ROBOT
continued from page 59

Even if the motor encounters resistance, it will continue to move in the necessary direction until the voltage outputs from the potentiometer and the DAC are equal. Later on, if the carriage plate encounters enough resistance to move it away from the selected position, in either position, the drive circuit will return the carriage plate to the selected position as soon as it is able to, without further action by the computer.

The circuit we used to accomplish all that is surprisingly simple. As shown in Fig. 4, a DAC0832 DAC configured in the voltage mode is used to output the desired analog position. One section of an LM324 quad op-amp buffers the output of the DAC, while another multiples a 2.5 volt reference voltage by two, resulting in a 0 - to 5 -volt output range. Two other sections of the LM324 are used to compare the output of the DAC to the output of the position-sensing potentiometer; the output of the potentiometer corresponds to the actual position of the carriage plate. When the voltage from the potentiometer is exactly equal to the output from the DAC, but opposite in sign, with respect to the 2.5 -volt reference, the circuit shuts down the motor. A small dead band is introduced into the comparator circuit to insure that the motor is not forced to oscillate about its target position. A single 74LSI 38 address decoder is used to enable and disable the circuit.

The entire control circuit, minus of course, the potentionneter and the notor, can be mounted on a small (2×2.5 inches) piece of perforated construction board; the layout is not critical. When finished, the circuit board can be mounted near the potentiometer using doublesided foan tape or standoffs.

Software

Note that the use of a 15-tooth sprocket results in more chain travel in 10 turns of the potentiometer than the linear ballbearing slide can achieve. That means that it is possible to program positions that are beyond the travel limits of the carriage plate. If that is done, the motor will continue to turn atter the ball-bearing slide has hit a stop. Therefore, the values for the limits of travel must be determined experimentally. and the software set up to disallow values greater than those limits.
The RERBUS interface that is used to communicate with the arm electronics is controlled by two digital ports so that all timing problems vanish. We must write the data to one port and use the other port to set up our address and control signal. We will create two Forth words to do that: XPC@ and XPC!

```
:XPC@ (address - data)
    DUP ( save copy of address)
    80 OR ( set WRITE high )
    BF AND ( set READ low - active)
    130 PC@ (get the data from 130)
    SWAP (get the old address)
    C0OR 140 PC!; ( both strobes high )
XPC! (data address -)
    SWAP 130 PC!(write data to port)
    DUP (save a copy of addr)
    40 OR ( set READ strobe high )
    7F AND ( set WRITE strobe low )
    140 PC! (write addr and cotrl)
    C0 AND 140 PC!; (both strobes
    high )
```

Those two words are direct analogies of the Forth words PC@ and PC!, which fetch and store bytes to ordinary ports

Notes

The mechanical aspects of the arm are easily modified to suit your needs. If you wish to do so, here are some design factors to keep in mind. When considering whether to increase the arm's lifting capacity, remember that the capacity must be consistent with the design of the robot. It's pointless to design an arm that lifts 100 pounds with ease if lifting such a weight will cause the robot to topple forward.

The steel ladder chain is rated at 90 pounds yield strength. Allowing for a 50% safety factor (highly recommended) means that you can use the ladder chain to lift to about 45 pounds. If your requirements call for loads that are greater than that, you will have to use a different style of chain (for example, riveted $1 / 4$-inch roller chain).

The motor and gearhead are the governing factors for lifting capacity and speed. The lift motor should draw no more than 3 amps, the rating of the connecting ribbon cable. Use of a worm-gear style gearhead would improve the design because then the load could not back drive the motor.

The orientation of the linear ball-bearing slides deserves some consideration. Building the lift assembly is easiest when the slides are oriented as described in this article. However, greater loading capacity would be achieved if the slides were mounted on aluminum angle and rotated 90°. That would allow the use of less costly FBW3590NF series linear bearings instead of the FBW50110F series specified. While the FBW3590NF series is only available in $800-\mathrm{mm}$ maximum lengths, several sections could be joined together to yield any overall length desired.

The Brevel motor specitied comes with mounting holes for a shaft encoder. That means that we could use the same position sensing scheme as the main motor (shaft encoder and quadrature decoding). That would atlow for greater accuracy when positioning the carriage plate. See Part 7 in the July 1987 issue of Radio-Electronics for more information.

R-E

THE VIDEO-EFFECTS GENERATOR main board.

THE EFFECTS BOARD for the video-effects generator.

DIGITAL AUDIO TAPE

contimued from page 47
from adjacent tracks is eliminated by reversing the azimuth on each head.

Each track contains 196 blocks of data, with each block containing 288 bits. There are three types of data stored on the tape: 1) The music signal that is digitally coded using PCM. 2) Subcodes, which provide various information about the tape in the playback mode. 3) An Automatic Track Finder (ATF) signal

The largest group of blocks is contained in the PCM area. The structure of a PCM block is shown in Fig. 5-b. Along with the PCM music signal, each block contains a synchronizing signal, a code that identifies it as a PCM block, a block address, and parity information.
The structure of the sub-code blocks is similar. The main difference between the two blocks is the identity data. The subcodes are used mainly for the convenience of the user during playback. They can contain such information as the tape's table of contents, including the location of each selection. They can be used to designate the beginning of a selection, or they can instruct the machine to skip over areas of a tape.
Along with music and subcode signals is an Automatic Track Finder (ATF) signal that helps the head accurately trace recorded tracks in the playback mode. It controls the head-to-tape positioning, and thus eliminates the need for a control head and a tracking-adjustment knob such as those found on VCR's.
The other overhead margin, PLL,help the DAT player keep track of where it is. The subcodes can provide info such as the selection's index number, length, etc. They facilitate such tape-deck features as direct-tune selection, track repeat, length of selection, etc

Now let's see how all that information gets onto the tape. As the block diagram in Fig. 6 shows, the analog signal to be recorded is first digitized. In the next step, the overhead is added-all the codes that are needed to keep track of the data flow in the playback mode. The order that the data are placed on the tape is interesting. The data are imerleaved. In other words. the position of the left-channel and rightchannel information are alternated on adjacent tracks. That is very important for error correction. We won't discuss error correction in detail, except to point out that since the data rate of DAT is about 2.4 megabits per second, you can be sure that some of the data will be in error-cither from manufacturing defects, dirt, or any number of reasons. Error correction allows many of the errors to be inaudible during playback

After the interleave block cloes its job. the data are converted from 8 bits to 10
bits. The l()-bit modulation helps the DAT recorder keep better track of timing information. Of course for playbach, the process is reversed by the $10-\mathrm{t} 0-8$ modulator.

The subcode generator and detector are used to decode the subcode channel. which is a low-capacity channel that can be used for storing information ranging from track length to perhaps a transeript of the information on the tape. The subcodes can also be used to control some of the DAT deck's functions. For example. some decks may allow you to program repeat-track functions. or auto-shatoff after a certain number of plays. etc.

The politics of DAT

Digital audio tape is an exciting technology. But not everyone is excited about it. The recording industry is territied that if consumers have access to digital recording, sales of all pre-recorded material will be hurt.

The recording industry wants to incorporate an anti-copy system that cuts a notch in all pre-recorded softwaretapes. CD's, LP's etc. - that would be recognized by a DAT recorder, shutting the recorder down.

The hardware manutacturers point out. however. that past events don't lead to the

- Dual Inputs - measure two temperature sources, switch-selectable
- Differential and Normal Temperature Modes - automatically read the difference between two temperatures or each separately. Provides for accurate relative temperature determinations. Ideal for heating and air conditioning service and environmental monitoring
- DC Millivolt Range - quick check of thermocouples, flame rods and other sensors
- Chart Recorder Output - provides 1 mV DC per degree F or C output with low source resistance for recording/controlling applications
- Four Ranges: $-30^{\circ} \mathrm{F}$ to $+200^{\circ} \mathrm{F}$ and $+200^{\circ} \mathrm{F}$ to $+1200^{\circ} \mathrm{F}$ $-34^{\circ} \mathrm{C}$ to $+93^{\circ} \mathrm{C}$ and $+93^{\circ} \mathrm{C}$ to $+650^{\circ} \mathrm{C}$
- High Accuracy - 0.2% of reading $+1^{\circ} \mathrm{C}\left(1.8^{\circ} \mathrm{F}\right)$, from $0^{\circ} \mathrm{F}$ to $+1000^{\circ} \mathrm{F}$
- Switch-Selectable Centigrade or Fahrenheit Readout
- Large, High-Contrast, 0.5" Liquid Crystal Display
- Single 9 Volt Alkaline Battery
- Humidity Kit, Disposable Thermocouples and Other Accessories Available

Model 383, complete with test lead set, 4' J-type temperature sensor probe. 9 V alkaline battery and operator's manual, Cat. No. 12415

AVAILABLE FROM LEADING ELECTRONICSIELECTRICAL DISTRIBUTORS

SIMPSON ELECTRIC COMPANY
853 Dundee Avenue, Elgin, Illinois 60120-3090 (312) 697-2260 • Telex 72-2416 • Cable SIMELCO
conclusion that DAT will hurt the sales of any pre-recorded media. They note that each new recording format has opened up new markets and sales for the recording industry. The hardware manufactures are convinced that the consumers are ready for-and in fact demand-better quality. To back up that argument, they point to the explosive sales of CD's and CD players, and are happy to remind you of the initial skepticism that the Recording Industry Association of America, or RIAA, had of the CD format.

While the RIAA is convinced that an anti-copy system must be incorporated in DAT so that sales of pre-recorded DAT tape and CD's wont' be affected, the hardware manufacturers point out that pre-recorded cassettes actually outsell I.P's, and that direct digital-to-digital copies cannot be made of either CD's or pre-recorded DAT's because of the different sampling rates used.

The issue seems to be whether consumers can be trusted to use DAT technology responsibly. That raises another question: is making a copy of a CD or LP for personal use responsible, or is it piracy?

Not only is the anti-copy system an affront to the rights of consumers to make home recordings, it is not inaudible, as the recording industry claims. That is not just our opinion: In May of this year, 200 recording industry executives met to press their demands that the CBS Copycode system be manditory for all new recordings. Engineers and music critics were brought to the studios of Thorn-EMI to demonstrate that Copicode doesn't affect the reproduction of music.

However, the music critics were able to hear the effects of Copvcode. They noted subtle effects, especially on high piano notes. If the industry goes ahead with the use of Copycode, those who take their music most seriously will be the ones affected most. That certainly is not a good marketing strategy. The people most likely to buy a new and better recording tech-nology-especially in its early stages before prices come down-are the people who take their music seriously.

The RIAA's insistence that an anticopy system be used has so far kept DAT out of this country. Some companies have insisted that if the bill is passed they simply comply with the law and bring in DAT machines incorporating the anti-copy system. We don't believe that is very likely, and many potential DAT manufacturers agree. Would you buy a digital tape recorder if you couldn't make your own tapes-for your own personal use? We wouldn't either.

For more on the political arguments surrounding DAT, see our guest editoral on page 4 from the Home Recording Rights Coalition.

R-E

DECODE NEARLY ANY SINGLE LEVEL GATED PULSE SIGNAL. New circuit works with Hamlin, Jerrold, Sylvania, and Eagle systems. Decodes In-band, Out-band, AM or FM reference. Complete educational kit including P.C. board, parts, case, and 40 page gated pulse theory booklet is only $\$ 47.00$ plus $\$ 3.00$ shipping. Order no. 1PFD-1K. ELEPHANT ELECTRONICS INC. P.O. Box 41865-R, Phoenix, AZ 85080. (602) 581-1973

CIRCLE 120 ON FREE INFORMATION CARD

THE PS-1 (TOP) REMOVES MOST of the small ticks and pops (but not gouges) prevalent in even well-cared-for records. Kit $\$ 79.95$, assembled $\$ 129.95$. The ASRU cleans up noise in fadeouts, between grooves, even '60s CD's. Kit \$120, assembled $\$ 190$. These can make your treasured vinyl discs near CD quality. Buy both, save $\$ 20$. SYMMETRIC SOUND SYSTEMS, INC., 856R Lynn Rose Ct., Santa Rosa, CA 95404. (707) 546-3895.

THE LEVITATOR SUSPENDS A METALLIC BALL in mid-air. The Levitator will amaze everybody as it defies the most basic law of nature. $\$ 79.95$ NUKE ALERT, pocket-sized radiation detector monitors Beta, Gamma. and X-ray radiation. Seen on Good Morning America. CES. USA Today \$79.95. All products ready to use Guaranteed. Call or write free catalog (402) 554-0383. Order 1-800-624-1150. UNITED IMPORTS \& MFG., 6846 Pacific St. \#2, Omaha, NE 68106.

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a $9 v$ battery and hear every sound in an entire house up to 1 mile away! Adjustable from $70-130 \mathrm{MHZ}$. Use with any FM radio. Complete kit $\$ 29.95+$ $\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

CABLE TV CONVERTERS AND DESCRAMBLERS. Large selection of top quality merchandise. Low prices. Quantity discounts. We ship COD. Most orders are shipped within 24 hrs. Send $\$ 2.00$ for catalog. CABLETRONICS UNLIMITED, P.O. Box 266 Dept. R, S. Weymouth, MA 02190 (617) 843.5191

CIRCLE 197 ON FREE INFORMATION CARD

PANASONIC CABLE CONVERTERS, Wholesale and Retail. Scientific Atlanta and Pioneer Cable Converters in stock. Panasonic model 130 N 68 channel converter \$79.95, Panasonic Amplified Video Control Switch Model VCS-1 \$59.95. Scientific Atlanta Brand new Model \#8528 550MHZ 80 Channels Converter $\$ 89.95$. Video Corrector (MACRO, COPYGUARD, DIGITAL) ENHANCER \$89.95. Write or call BLUE STAR IND., 4712 AVE. N, Dept 105, Brooklyn, NY 11234. Phone 1-718-258-9495.

CIRCLE 85 ON FREE INFORMATION CARD

ZENITH SSAVI \$169; Level II \$199, reconditioned. Sylvania 4040 converter/DIC \$169; N-12, MLD-1200. Converters \& accessories. SSAVI project handbook $\$ 6.50$ ppd. Radar speed guns for baseball, car/boat racing, bowling,skiing, etc., from $\$ 275$. Professional models used by police. IBM-compatible TUR-BO-XT computer system with fully expandable memory \& many extras from $\$ 895$. Catalog \$1. AIS SATELLITE, INC., P.O. Box 1226-O, Dublin, PA 18917. 215-249-9411.
CIRCLE 81 ON FREE INFORMATION CARD

1 MHz FUNCTION GENERATOR KIT.
Covers 0.1 Hertz to 1 MHz in 6 ranges. 100:1 frequency ratio. Sine, Triangle \& Square waves available, (with DC offset). TTL output. FM \& AM modulation inputs. 47 ohm output. Includes all parts, board, power supply and face plate decal. Excellent detailed assembly and theory of operation manual included. Superb classroom project. OCTE ELEC TRONICS, Box 276, Alburg, VT 05440. (514) 739-9328

CIRCLE 201 ON FREE INFORMATION CARD

FREE TOOL \& INSTRUMENT CATALOG. Packed with over 5,000 quality products for testing, repairing and assembling electronic equipment. A full selection of test instruments plus precision hand tools, tool cases, soldering equipment and much more. Products are shown in full color with detailed descriptions, pricing and a 100% satisfaction guarantee. CONTACT EAST, P.O. Box 786, No. Andover, MA 01845. Call (800) 225-5370 or in MA (617) 682-2000.

CIRCLE 55 ON FREE INFORMATION CARD

TUNABLE NOTCH FILTER-for elimination of any TV, FM, or VHF signal. Can be tuned precisely to ANY signal within these ranges: *MODEL 26-Ch's. 2-6 plus FM [54-108 Mhz] *MODEL 1422-Ch's. 14(A)-22(I) [120-174 Mhz] *MODEL 713-Ch's. 7-13 [174-216 Mhz] Highly selective 60 dB notch. Send $\$ 30$ each Quantity prices as low as $\$ 15$. Money back guarantee. STAR CIRCUITS, P.O. Box 8332, Pembroke Pines, FL. 33084

CIRCLE 94 ON FREE INFORMATION CARD

NEW 442 SYNE WAVE DECODER WITH VARI SYNC-Replaces the oak N-12 $\$ 80.00$, S.B. add on decoder $\$ 99.00$, S.B. Tri-Bi decoder $\$ 100.00$, Zenith SSAVI $\$ 185.00$, S.B. S.A. decoder \$140.00, Starcom converter $\$ 139.95$. Buy a decoder take off $\$(10.00)$. Guaranteed. (402) 331-4957. Call or write for your free catalog. Many other products \& quantity pricing. M.D. ELECTRONICS, 5078 So. 108th \#115A, Omaha, NE 68137
CIRCLE 211 ON FREE INFORMATION CARD

ULTRASONIC RADAR. An easy to construct Ultrasonic Ranging System complete with transceiver module and Polaroid ultrasonic transducer. System easily connects to any computer to measure distances from 18 inches to 35 feet with a resolution of $1.2^{\prime \prime}$. T101 Sonar Ranger \$79. plus \$2. S\&H - XDR02 Add'l Transducers \$20. CCl, 4 Park St., Suite 12, Vernon, CT 06066. (203) 872-2751.
CIRCLE 203 ON FREE INFORMATION CARD

A CAREER START FOR THE 21ST CENTURY. Since 1905, National Technical Schools has helped people build successful careers. Enter the 21 st Century through home study courses in Robotics, Computer Technology and Servicing, Microprocessors, Video Technology, Basic Electronics, Transportation Technology, Climate Control Technology or TV and Radio Servicing. For a FREE catalog, call 1-800-B-BETTER. Or write NTS/INDEPENDENT TRAINING GROUP, 456 West M. L. King Jr. Blvd. L.A. CA 90037.

CIRCLE 181 ON FREE INFORMATION CARD

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to $1 / 4$ mile range. Adjustable from $70-130 \mathrm{MHZ}$. Complete kit $\$ 29.95$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.
CIRCLE 127 ON FREE INFORMATION CARD

DECODE THE NEW VIDEO TAPE COPY PROTECTION SCHEME. Bothered by brightness changes, vertical jittering and video noise while watching rented tapes? Stop it with the LINE ZAPPER. New kit removes copy protection that often interferes with normal television operation. Complete KIT only $\$ 69.95$. Assembled with 1 year warranty $\$ 124.95$. Add $\$ 3.00$ shipping per unit. Dealer inquiries welcome. ELEPHANT ELECTRONICS, Box 41865-L, Phoenix, AZ 85080. (602) 581-1973. Allow 6 weeks for delivery.
CIRCLE 205 ON FREE INFORMATION CARD

Satellite TV

The international connection, part 2

IAST TIME, WE SAW THAT SOME COUNtries, under pressure from the United States, have acted to prevent reception of U.S. satellite signals outside of this country. However, some countries have resisted such pressure.

Some feel that national laws are for the country where the laws are enacted, and those governments see little reason to allow a U.S. law to be applied in Bermuda, or a French law to be applied in Switzerland, for example. The U.S. seems to be slowly reacting to that point of view, and recently there have been proposals to correct that situation.

Many countries, such as Jamaica, are very dependent upon cordial relations with the United States. The Caribbean, as an example, now benefits from a U.S.-aid program called the CaribbeanBasin Ínitiative. Countries that meet certain legislated provisions of the program can ship products into the U.S. with no or very low duties. A firm manufacturing ceramic figurines in the Dominican Republic, for example, is permitted to bring its products to the U.S. marketplace at a duty-advantage. That is important to that firm and its 100 employees

Under the proposed legislative changes, a country that does not cooperate with policing the unauthorized use of American "intellectual" property, such as movies, would be disqualified from the program's benefits.

That is a strong weapon in the hands of U.S. programmers who seek to force foreign governments to shut down unauthorized users of their programming. A country
that resists the intrusion of U.S. laws into its territory on philosophical grounds, or feels intimidated by its large North-American neighbor would think twice about not cooperating with U.S. officials applying U.S. laws when local jobs and commerce are at stake.

The United States has reasons beyond the economic well being of its satellite-TV programmers for restricting the reception of domestic satellite TV. Indeed, if economics were the only factor, it might seek to allow such reception. Currently, we have about 50% more available satellite channels or transponders than we have fulltime users. That means that many satellite channels are under-used. Naturally a satellite manufacturer such as GTE or RCA would like to see all channels/transponders put to maximum use to realize the maximum possible revenue.

If the U.S. market for transponders is not as large as the supply of transponders, and the satellites coverage extends beyond our borders, why not offer those transponders for rent or sale to firms located outside of the United States? Technically, that is illegal.

Domestic vs. international

The U.S. is a party to various international agreements that define the operation of satellites. Those agreements have created two general categories of satellites: domestic and international. Domestic satellites can only be used to transmit signals to the country that operates it. That means that a U.S. satellite, like one of the Satcom series, can only transmit programming to U.S.-located receiving

FIG. 1
sites; a Canadian satellite, like a member of the Anik series, can only transmit programming to Canada (the Anik-E, scheduled for launch in 1990 is shown in Fig. 1); and so on.

International satellites, on the other hand, are operated by international organizations and can only be used to transmit signals from one country to another; they can't be used to beam a signal from a country back to a site within the same country. The two international satellite organizations are Intelsat and the U.S.S.R.-sponsored Intersputnik.

However, international accords tend to be warped with time, and nearly a decade ago Intelsat began renting satellite transponders to countries such as Brazil, who in turn used those transponders for service wholly within their borders. More recently, nations have rented unused transponders on domestic satellites to their neighbors.

For instance, Indonesia has allowed their neighbors access to unused transponders on board their Palapa satellites. Further, un-

There are over

100 CHANNELS

 of programs available, with each programmer making numerous and continuous programming changes .You will need a

WEEKLY CUIDE

if you want an accurate guide!
der pressure, various U.S. satellites have been rented part or fulltime on a transponder by transponder basis for service that was clearly international in scope.
Most recently, a U.S. firm has created a data-processing operation within a free-trade zone near Montego Bay, Jamaica. The operation processes credit-card orders for U.S. customers. Those customers dial an 800 number in the U.S. and are linked to the Jamaican site via satellite.

Dialing for dollars

That last example brings us to an important point: Video is not the only signal delivered by satellite. And while the U.S. is enacting new, more restrictive legislation aimed at curbing distribution of television programming to other countries, the same thing isn't happening in the fields of data and voice communications. There, free-wheeling agreements and regulations are replacing the restrictive rules of yesteryear.

IF YOU LIVE IN THE CARIBBEAN, CENTRAL AMERICA, NORTHERN S. AMERICA or FLORIDA . . .

WIN A PARACLIPSE HOME DISH SYSTEM!

Bob Cooper's CARIBBEAN ELECTRONICS MAGAZINE is giving away 12 complete Paraclipse 12^{\prime} home dish systems between September 1, 1987 and August 31, 1988. FREE. No obligation of any kind! If you are an amateur radio operator in the 'qualifying area' (see map), simply send us your Ham radio QSL card. If you are in elec tronics but not a licensed amateur, send your business card. You may enter once per month for each of the 12 months but no more than once per month. The home dish system winners are announced in 'CEM' monthly starting with the November 1987 issue.

PLUS - when we receive your QSL card or business card, we will send you a FREE sample copy of the most exciting electronics magazine in the Caribbean; Caribbean Electronics. CEM covers every aspect of communications and broadcasting, just for those who live in the Caribbean and countries surrounding the Caribbean. And we do it in English and Spanish with special Spanish summaries for all feature articles.

OUR twelve FREE home dish systems feature the highly acclaimed Paraclipse 12 foot dish with tuned feed, state-of-the-art solid state actuator/controller, and the top-rated by test AVCOM 2 series receiver system with remote control. This is the best, quality system for home or commercial use in the Caribbean. Find out how our CEM Lab rates everything from power line filters to VCRs, shortwave radios to home computers for Caribbean use in Caribbean Electronics Magazine. Send us your QSL card or business card today!

CARIBBEAN ELECTRONICS MAGAZINE
 P. O. Box 100858, Ft. Lauderdale, FL 33310 USA Telephone: 305/733-9955; in Florida 800-367-8150

That is happening because of pressures from satellite owners or from firms who see satellites as a link to potential revenue sources outside of the United States. As a result, the distinction between domestic and international satellites in that field is blurring rapidly.

Interestingly, some of the impetus behind the changes has come about due to reception of U.S. programming by those outside of this country. Much of that programming is advertiser supported, and many of the advertisements offer products that can be ordered by dialing a toll-free 800 number. That's no problem for viewers in the U.S., but formerly those numbers could not be dialed from other countries. Since many of the products can not be purchased locally in Latin America, the Carribean, etc., there was considerable demand for such products. Hence, a great deal of potential revenue was lost.

That was until the creative marketing genius of U.S. telephone companies got into the act. Now, thanks to their urging, a service known as USA Direct is in place. For a charge, that service lets those in the Carribean region bypass the local telephone systems and tie in directly to the U.S. telephone system, including access to 800 numbers. The net result is lower cost per call for the users, more volume for the telephone company, and more business for mail-order companies. Eventually, 800 service may even be extended to that region, allowing totally toll-free ordering of products.

As you can see, our government is sending confusing signals to the rest of the world. On one hand, new legislation seems to be saying that we want to restrict the exportation of American "culture" via satellite. But we seem to have no objection to U.S. business using the "satellite expressway" to expand into global markets. The developments that come about because of that will be interesting to watch.

R-E

SCRAMBLE FACTS

718-343-0130
3 minutes of industry news, technical tips, and new product information.

Audio UPDATE

Magnetically shielded loudspeakers

THE GROWING POPULARITY OF AUDIO/ video systems has produced a plethora of components, accessories, and adapters, all intended to facilitate the marriage of the two media. From a technical point of view, one of the more interesting of the newly created audio/video components is the magnetically shielded speaker system. The purpose of the magnetic shielding is to prevent the stray magnetic-flux field normally emitted by a speaker's magnet from impinging on the video monitor's picture tube. Because the electron beams inside the picture tube are controlled magnetically, any extraneous magnetic influences can have an adverse effect on the picture.

Preventing flux influx

In my youth I worked for an electronic-kit company as a testinstrument troubleshooter. The oscilloscopes I serviced were primitive devices by today's standards, but they had the virtue of being easily fixed when something went wrong. One of the things that went wrong in the customer's kits was trace distortion caused by magnetic radiation from the scope's power transformer. The fix was simple enough: A 3 - by 5 -inch piece of thin sheet steel was bolted to the scope's chassis in the magnetic path and then bent until the trace distortion was no longer visible. What I installed was not a magnetic shield but rather a magnetic deflector, which brings us to a rather interesting topic-the "shielding" techniques available to the manufacturers of videoready speakers.

FIG. 3

Internal shielding

At a time when all speakers used Alnico magnets, shielding was a simple proposition. The Alnico magnet was in the form of a cylindrical "slug" surrounded on two
sides by a heavy metal yoke. See Fig. 1. The yoke was actually part of the magnetic circuit that concentrated the magnet flux in the voicecoil gap. The inherent magnetic leakage from such a structure is quite low, but today the high cost of Alnico magnets has pretty much eliminated them from speaker use in favor of ceramic-ring magnets. The ceramic magnet is usually in the form of a flat-sided ceramic doughnut that surrounds the pole piece as shown in the cross-section view in Fig. 2. If you've ever handled a ceramic-magnet speaker you know that there is extensive magnetic leakage from the exposed outer edges of the ceramicmagnetic ring.

External shielding

External shielding in the form of a judiciously placed ferrous-metal cover can be effective with small speakers with low-flux magnetics such as are found in many conventional TV sets. However, when such shielding is applied to larger, better quality speakers, problems occur. Although it can be effective in suppressing magnetic leakage, the shielding diverts a substantial part of the available flux away from the voice-coil gap, which can result in an unacceptable loss of damping and efficiency.

Magnetic deflection.

The technique used to produce today's better "magnetically shielded" speakers uses no shielding at all! As illustrated in crosssection view in Fig. 3, a second, fairly hefty ceramic-ring magnet is installed piggyback at the rear of
the speaker so that its magnetic polarity is opposite to that of the main magnet. An iron housing (a "pot" in speaker-designer jargon) is part of the additional assembly and its purpose is to focus the magnetic field of the second magnet so as to divert the stray leak-age-flux back toward the main magnet. It does that so effectively that an additional benefit occursthere is an increase in the magnetic flux appearing in the voice-coil gap.

In effect, it is as though the main magnet were made more powerful. Adding an extra magnet is not a cheap solution to the flux-leakage problem, however, because the magnet is the most expensive part in most speakers.

To digress for a moment: Do not assume that a more effective or heavier magnet is always desirable in a speaker system. An excessively strong magnet can electronically overdamp a woofer, thus inhibiting its voice-coil/cone movement at low frequencies. Overallmid-frequency efficiency
will be increased, but at the expense of low-bass performance. A knowledgeable designer juggles (trades off) efficiency, bass performance, and cabinet size to achieve the specific results he (or the marketing department) wants.

Video psychoacoustics

There's an important question that no one seems to be asking about shielded video speakers: Is it a product category that is really needed? For several years I've been using a pair of small B\&W LM-1 car speaker systems with my Proton video monitor. The speakers are driven directly by the lowpowered stereo amplifier built into the Proton unit, which sits between them.

There's no effect on the picture as long as the LM-1's are spaced a foot or so away from the screen. That is not surprising, since magnetic fields are subject to the "inverse square law." That means that the strength of the field decreases in proportion to the square of the distance (rather than linearly) as

NRIPrepares You At Home For Today's Hottest New Career Master digital electronics servicing as you build your own IBM-compatible computer!
A brand new course for an exciting new field. . servicing compurer peripherals (disk: drives, printers, display terminals, modems, eic.) and the latest digital equipment found in industry tertay. Job opponunities for the trained digital technician have never been greater. It takes skilled personnel to keep roday's digitally automated production lines and manufacuring equipment rolling. NRI trains you to be a high-demand digital rechnician or prepares you to he a high-demand digitat techinician or p
for your own independent service business.

You leam by doing. . . the NRI way As you learn, you get practical hands-on experience building vour own 256 K IBM-compatible computer and disk drive. You also build, and learn ro use and service, yout own triggered-sweep oscilloscope. digital logic probe, and digital multimeter. . . instruments used by roday's electronics professionals.

Diagnostic Software Makes Your Computer a Dedicated Digital Testing Device
With the exclusive diagnostic software included in your course, your compuer actually becomes your most important piece of digital test cquipment. You use your computer to troubleshoot video displays and tetminals, printers, disk drives, and more. Plus you learn to apply your knowledge to the diagnosis and repair of any digital equipment you encounter in your servicing career.

Send Today for FREE Catalog
Send the coupon today for NRI's free, 100-page catalog with all the decails about starting your career in Digital

Electronics Servicing, plus facts about NR1 training in other high-pay, high-growth electronics career fields. If ihs coupon is missing, write to us ar NRI School of Electronics McGraw-I Iill Continuing Education Center. 3939 Wisconsin Avenue. Washington, DC 20016.

Send Coupon Today for Free Catiog!

I ATE School of Electronics
McGraw-Hill Continuing Education Center 3939 Wisconsin Ave., Washington, D.C. 20016

A NEW KIND OF MAGAZINE FOR ELECTRONICS PROFESSIONALS

BUILD THE PT-68K And learn $\mathbf{6 8 0 0 0}$ computing in the CD Classroom

CONTENTS OCTOBER 1987 Vol. 4 No. 10

90 CD CLASSROOM, PART 1
Build the PT-08K using IBM clone components.

96 COMMODCIRE PULSE GENERATOR
Breathe new life into your 64

87 EDITOR'S WORKBENCH

Hardware: The Option Board
Software: Mite
In Brief: PCED , Cruise Control, KSH-1

Computer Digest

Larry Steckler,

EHF, CET: publisher \& editor in chief

Art Kleiman,

 editorial director Brian C. Fenton, managing editor Jeff Holtzman technical editor Byron G. Wels, associate editor Carl Laron, associate editor Robert A. Young, assistant editor Teri Scaduto editorial assistant Ruby M. Yee, production director Karen Tucker, production advertising Robert A. W. Lowndes, production associate Marcella Amoroso production assistant Andre Duzant, technical illustrator Jacqueline P. Cheeseboro circulation director Arline R. Fishman, advertising directorComputerDigest Gernsback Publications, Inc 500-B Bi-County Blvd. Farmingdale, NY 11735

ADVERTISING SALES 516-293-3000
Larry Steckler Publisher

NATIONAL SALES

Joe Shere
1507 Bonnie Doone Terrace
Corona Del Mar, CA 92625 714-760-8967

Cover Photography by Peter Stark

EDITOR'S Work Bench

Introducing the Computer Digest Classroom: Build your own 68000 computer.

1the August issue (see Editor's Workbench, p. 63), we announced a new 68000 computer system custom-designed for readers of Computer Digest. The PT-68K is now a reality; the price is still $\$ 200$ for a minimal system-and it's available in a number of configurations. (Turn to page 90 for more information.)
We'll be publishing a series of articles on the design of the PT-68K. The series assumes knowledge of basic electronics and basic digital logic, and it assumes that you have basic construction skills. By following the series from beginning to end, you'll learn in detail about one of today's most popular microprocessors, the 68000; that knowledge will surely aid you as you make your career in electronics.

Every effort has been made to make the PT-68K as economical as possible, so it makes extensive use of IBM PC clone components (keyboard, case, power supply, video adapter, monitor, etc.) wherever it is possible.

Our author wrote a similar series of articles on an earlier member of the Motorola family of microprocessors for a now-defunct computer magazine; his disk-operating system is used on various computers in many countries around the world; and he is a practicing teacher who is familiar with the needs of the computer neophyte. So he is well-qualified to be Headmaster of the Computer Digest Classroom.

- ${ }^{\boldsymbol{1}}$

Central Point Software: The Option Board

Mention the words "copy protection" and you're sure to start an argument, because there are as many good reasons for a programmer to protect his program as

there are for a consumer to back it up. Both sides have reasonable arguments, so there's a constant war between the two. And when a new copy-protection scheme shows up, it's only a matter of time before someone figures a way around it.

There are several good programs available for the IBM PC that can defeat most copy-protection schemes, but in the final analysis they all share a common weakness, because no matter how sophisticated their algorthms, they all have to use the PC's diskcontrol IC, the NEC PD765

A smart programmer can take advantage of that IC's known quirks in a copy-protection scheme Since some of those peculiarities cause unreliable reads and writes, it can be difficult for copy-protection software to be sure that the data it thinks it sees is what's really on the disk.

The Option Board (Central Point Software, Inc., 9700 S.W. Capitol Hivy \#100, Portland, OR 97219) plugs into a standard expansion slot and provides the ultimate backup system for the PC. It gets around the limitations of the PD765 disk controller by using its own hardware to read and write the disk. The Option Board's control software makes it simple to copy a disk, and Central Point also supplies you with a very powerful track and sector editor.

Installation consists simply of installing the board in an unused expansion slot, plugging your computer's disk-drive cable into the board, and then using the supplied cable to connect the Option Board to your disk controller. Then you're ready to run the software and put the board to work.

FIG. 1-The Option Board.

The software

Even though the Option Board is connected between your standard disk controller and your disk drives, it is transparent to the system until the supplied software wakes it up. That software consists of two programs: TC, a disk copier, and TE, a disk editor. Both programs are as uncomplicated as possible, their commands are straightforward and all options are displayed onscreen.

Copying a disk with TC is easy. You set the source and destination drives, the number of sides, and the range of tracks to copy through a menu. You can also maintain the track lengths, copy "weak bits," verify each write, and keep the copy's track alignment the same as the original's. All options can be specified on the command line when you run the program, but it's much easier to pick and choose from the menu.

One of the first things you'll notice when running the program is that, even with 640K of RAM, only 26 tracks are read at a time. Software-only copiers can read more data at a time because they read only the data bytes from a track; the Option Board, on the other hand, reads the entire track into memory, including the data headers, address headers, and the gap bytes that DOS puts there when the disk is formatted. In other words, TC loads a complete image of each track, whereas a software-only copier loads only data. By reading and writing whole track imases, the Option Board can easily handle any protection scheme that relies on a non-standard disk format.

The success of any disk copier depends to a great extent on the assumptions it makes when it reads a disk. The greater the number of things it expects to find, the easier it is to fool. The Option Board makes very few assumptions about disk format so it has a much better chance of making a successful copy, and since it can't be confused by non-standard disk formatting, you can use it to copy disks written by other computers-even Apple disks! It's a real testament to the design of the Option Board that it knows how to read them at all.

The disk editor

The full power of the Option Board becomes evident when you use TE, the disk editor You can get a track dump of both Apple and IBM disks-no mean accomplishment. The board can distinguish between regular bytes and sync bytes, and righlights the latter on the screen display to make them stand out. You can use the editor to take a bit-level cruise through the disk and change anything you find there. One extra-nice feature of the editor is that it will recalculate the CRC's for you when you write new data to a track. That is important because it is very difficult to do by hand, and if you get it wrong, the disk will be unreadable by DOS.

Examining a track dump can tell you a lot about how the disk was formatted. If you
know what you're doing, you can figure out how the directory is organized, how files are written, and how the data is stored; invaluable information if you're trying to rescue a crashed disk. Being able to identify single- and double-sided disks simplifies the process of data conversion.

The manual hand-holds the user through the process of installing and using the board There's a small section on how standard disks are formatted, but you'll have to go elsewhere if you want to learn about copy protection. Since there's absolutely no technical description of the Option Board itself, you won't be able to write software to use it. Central Point Software is keeping the board's circuitry to itself. That makes sense because knowing everything the board can do means you also know everything it can't do, and that's something the copy-protection people would love to find out.

Conclusion

If you have a substantial investment in copy-protected software, or if you really want to get into the nitty gritty of disk formatting, the Option Board is for you. It's much more powerful than software-only disk copiers and, at $\$ 100$, is only slightly more expensive. It's an impressive piece of hardware; the more you use it the more valuable it becomes.

MYCROFT LABS' Mite

Wall have our own special use for home computers, but sooner or later everyone wants to get on-line and explore. Telecommunications lets you tap into a whole new world of information. Everything from extended data bases, to airline guides, to remote bulletin boards is only a phone call away-if you have the hardware and software to do it.

Once you've decided on the hardware half of RS-232'ing, you still need software to make it work, and this is where things can get very bewildering. There are probably as many terminal programs available on the market as there are word processors and choosing the one that is best for you can be a confusing business. You need software that is easy to use, yet powerful.

Mycroft Labs (P. O. Box 6045, Tallahassee, FL 32314) has been marketing successive versions of Mite since the late seventies so the current release is the result of nearly 10 years of development. If you're an old hand when it comes to RS-232 stuff, you'll find that Mite has every feature you could conceivably want and if you're just learning what on-line means, you'll find the program so intuitively organized that you'll be getting around it in no time at all.
Although Mite started out in the CP/M world it was rewritten from scratch in 8086 assembler to run on the $P C$. This means it can cross directories and follow paths that might be set before the program is run. And it's tightly written as well - because Mite weighs in at a mere 51 k , you could run it on a machine with as little as 128k. The small size of the program becomes more impressive as you become more familiar with it and realize how powerful it is
The most basic function of any terminal software is the uploading and downloading of files. Mite can do simple, nonprotocol transfers of text but has the ability to handle four different types of binary transfers as well. XMODEM, YMODEM, KERMIT, and Mite's own protocols are fully sup-ported-in both single and batch modeand XMODEM can be set for either checksum or CRC error checking. All Mite commands can be issued in two ways. The first is by running through a series of menus while in command mode, and the second method is by typing a user-definable fly key in terminal mode, and then typing the command and appropriate argument, (e.g., SEND [filename], DIR [drive]: PATH [directoryl). When you're first getting started with Mite it's much simpler to issue commands from the menu but as you get more familiar with the program, you'll take advantage of the speed and convenience of remaining in terminal mode and using the fly key.
If you get stuck, Mite's extensive online help is only a keystroke away. You can get an explanation of any of the commands by pressing the question mark and the first letter of the command. If you're in command mode you'll get a full description of any of the commands on the screen. In terminal mode the help key will give you a commented list of the available commands. In either mode however, the help is well planned-it's complete without being obtrusive.
Mite can be automated as well. You can preprogram up to 10 macro strings to give you a one-key logon to dialup services, simplify the search command strings used with on-line data bases and, in general, make your time a lot more efficient-and that's nothing to sneeze at when you're online at more than 25 bucks an hour. Macros can be up to 61 characters long, and there are six special macro characters that perform functions such as making the macro stop executing until a particular character is received or linking to another macro.

If you're really into automating things, you can learn how to use MORSE, the programming language that's built into Dyna-Mite, Mycroft Lab's top of the line product. It's a BASIC-like language that lets you create programs that control operations while you're online. It has over 30 built-in commands such as LET, PRINT, GOTO, GOSUB, DIAL, HANGUP, IF, THEN, etc, and will also accept any of the standard Mite commands. The extensive vocabulary gives you the ability to create programs to automate the handling of electronic mail, do conditional searches through online data bases, or simplify an overly complex online procedure so it can be done by any inexperienced user. MORSE is to Mite what batch files are to DOS. Programmability is not just unique to Mite-other software, both commercial and shareware, have this feature. As far as power goes, MORSE falls about in the midde of the pile. It is, however, extremely easy to use and even someone who's just starting out will have no trouble at afl writing programs after ten minutes with the manual.

Mite's documentation is packaged in a 5 $\times 8$ looseleaf binder and it has all the information you need to find your way around the program as well as a good discussion of what you can find in the larger dial-up services such as Compuserve and The Source. If it means anything to you, Arthur C Clarke is a Mite user and he has written a book called Mite For Morons that will show even the most inexperienced user how to use the program.

There are two PC versions of Mite: MaxiMite and Dyna-Mite. The difference between them is extended terminal emulation and the MORSE language interpreter. MaxiMite costs $\$ 50$ and Dyna-Mite costs $\$ 100$, so if you're not interested in the extra goodies you can save the 50 bucks, but the addition of MORSE alone is worth the investment. If it were a stand-alone program, it would cost more than Dyna-Mite and you'd still need terminal software.

There's even a way to try out Mite for nothing. Mycroft Labs has put a version, called Mini-Mite, in the public domain. It has a lot of the bells and whistles, (but not MORSE, of course), and it can do XMODEM protocol as well as ASCII uploads and downloads. Look for it on your local BBS and, if it's not there, Mycroft Labs will send the whole thing to you on a disk, (including a small manual file), for a minimal charge of about $\$ 15$

For al! us 8 -bit lovers, Maxi-Mite is available in CP/M and there are overiays for a mind-boggling number of terminals. If you need a good terminal package for $C P / M$, the 50 bucks you spend for Maxi-Mite will turn out to be the best software investment you ever made. And that, of course, goes for the PC version as well. Mite meets every one of the criteria you should look for in software. It's powerful, well seasoned, actively supported, and reasonably priced.
If you need telecommunication software

Mite will provide you with a lot of power without doing too much damage to your wallet.-Bob Grossblatt

K SOFTWARE HOUSE, RESIDENT SCIENTIFIC CALCULATOR

Certainly, a memory-resident calculator is no ground-breaking product. However, like people, calculators are not all created equal, and not all calculate equally well. For many people, the typical "four-banger" (add, subtract, multiply, divide) included with programs like SideKick, PolyWindows, etc. is sufficient. But engineers often need transcendental functions, programmability, etc.

If you use a scientific calculator and a PC, the KSH-1 calculator can make life much easier for you. It has all the functions of the HP-11c it's modeled on, the ability to store programs on disk, and an attractive screen display (color or mono). See Fig, 2. It'll never get lost in a stack of papers on your desk; nor can anyone walk off with it.

You use the cursor-control keys (or a mouse) to move a blinking reverse-video bar to the screen locations that correspond to various keys. Just press Return, and the
function at that location will be executed Like the original, most keys actually perform three different functions: the default function, an F function (listed above the key) and a G function (listed below the key). F and G functions are available by pressing the F or G key of your PC's keyboard, followed by Return.

The KSH-1 includes several features not included in the original. To mention just a few, you can convert numbers among several bases (decimal, of course, as well as binary, octal, and hexadecimal). In addition, by pressing F8, the contents of the X, Y, Z, and T resisters are displayed on screen.

The KSH-1 comes with an informative manual containing usage hints and sample programs. The program is very easy to install, and, at $\$ 49.95$, is a bargain. Contact the K Software House, Rt. 2 Box 83B1, Unionville, TN 37180.

REVOLUTION SOFTWARE, CURSOR CONTROL

Keyboard and screen control has never been a strong-point of the MS-DOS operating system. Numerous add-in memoryresident programs purport to correct some deficiencies, but they tend to conflict with one another or other programs.

Along comes Cruse Control, a program that emerged as a by-product of another project. You use it to control cursor speed while moving through a spreadsheet, browsing a text file, etc. It has an automatic repeat (whose rate may be adjusted on the fly) for hands-free browsing. Repeat is applied to all the usual keys (excluding Control, Alt, the shift keys, NumLock, etc.).

In addition, Cruise Control has an autocontinued on pase 95

BUILD THE PT-68K

LEARN 68000 COMPUTING
 IN THE CD CLASSROOM

PETER STARK, STARK SOFTWARE SYSTEMS CORPORATION

TThe two major microprocessor manufacturers today are Intel and Motorola. Although Intel processors are better known (mainly due to their use in the IBM PC line), astute users agree that Motorola's 68000 family of microprocessors is more powerful and easier to use. When you look at heavy-duty number-crunching machines, you will find the 68020 used more often than any other.

We were tempted to use the 68020 in the comईuter described here (hereafter called the PT-68K), but were put off by the $\$ 200$ price of that one IC alone. So we settled for its slightly slower cousin, the 68000, which is used in various computers made by Atari, Commodore, Apple, in many laser printers, as well as in industrial controllers and scientific workstations.

The 68000 is roughly in the middle of the 68000 family of microprocessors; the 68008 is below it, and the 68020 is above it. A fourth processor, the 68010, is theoretically faster than the 68000, but the 68000 can run at faster clock rates and so is just about equal in overall speed. You can plug a 68010 into the PT-68K, but you probably won't notice any difference-except in price.

System overview

In its simplest form, the PT-68K runs at a clock rate of 8 MHz . With minor changes, it can run at 10 MHz ; if that's not fast enough, you can
al so run it at 12 or possibly 16 MHz . Naturally, faster models will cost more. In addition, you won't be able to use the 68010 at the higher clock rates.
Almost all necessary system components are contained on the PT-68K's printed-circuit board. A fully built-up board contains the 68000 microprocessor and support circuitry; one megabyte of dynamic RAM (main memory); 4K of battery-backed static RAM; 32 K of ROM (containing BASIC, a machine-lansuase debugger, and a link to the disk-operating system); four serial ports; two parallel ports; floppy-disk interface for up to four drives; sound interface for a speaker; a clock/calendar $1 C$; expansion connectors for memory and a hard disk controller; IBM PC keyboard interface; interface connectors for additional clone-compatible I/O boards.

You can communicate with the PT-68K using an RS-232 terminal or any computer running a communications program functioning as a terminal (perhaps an IBM PC or clone, an Apple, or a Commodore) Or you can plug an IBM keyboard and monochrome adapter card directly into the PT-68K and the computer will use them for input and output

What about software? First of all, the 68 K contains 32 K of permanent memory containing two programs that will let you use the computer right away, even if your system does not have disk drives
or a full complement of memory. The first program is called HUMBUG; as shown in Table 1, it has thirty commands that allow you to enter machine-language programs into memory, dump memory contents, test memory, fill memory,move memory, serch memory, start and stop programs, single-step or breakpoint them, and more. HUMBUG also provides a number of useful subroutines to handle the screen and keyboard (or terminal), boot from disk (Winchester or floppy), etc.

In addition, HUMBUG's BA command places you into its ROM BASIC interpreter. The ROM BASIC is somewhat limited, but it does allow you to peek and poke in memory, do floating-point calculations, and run test programs. You can't save them, but a full disk BASIC should be available by the time you read this.

SK*DOS

After you add memory and a disk interface, HUMBUG allows you to boot SK*DOS, a disk operating system (DOS) developed specifically for individual users and smali system manufacturers; it has been adapted to a variety of different computers in the U.S. and Europe.

SK*DOS comes with about forty utility programs, including an editor, an assembler, another version of BASIC, a game (Eliza), programs to read and write IBM PC disks, and RAM disk and disk cache programs (we will explain those terms later in this series). Also included is an emulator program that lets you run hundreds of programs developed for Motorola's 6809 processor. In addition, device drivers, and a number of other interesting and useful programs are also included.

SK*DOS requires at least one standard floppy-disk drive (singleor double-sided, 40 - or 80 -track, $31 / 2$ - or $51 / 4$-inch). SK*DOS itself can handle up to ten drives, but the PT-68K hardware will support only four. But you can also add one or two hard-disk drives to provide up to 128 megabytes of additional storage. And because the 68 K will accept some IBM type hard-disk interfaces, you can do so relatively cheaply as well.

Unlike some disk operating systems which are unique to just one brand or type of computer, SK*DOS has been adapted to a number of different 68008, 68000, and 68020 computers in the United States and Europe. This means that software developed on other machines will run on your 68 K system as well. For example, a number of inexpensive programs (a text processor, communications software, Edward Ream's screen editor, and Ron Cain's small C compiler, among others) are available through the SK*DOS Users' Group and from the Radio-Electronics BBS (300/1200, 8/N/1).
in addition, several members of the Users' Group are into Unix programming, and have converted Unix-like programs (such as Micro-EMACS and NRO) to run under SK*DOS. Last, as this article was being written, several commercial developers were working on larger programs including a full C compiler and a full Basic interpreter.

table 1-humbug commands

AD	- ASCll Dump	JU	- Jump to User program
AI	- ASCII Input	LO	- Load S1-S9 format
AO	- ASCll Output	MC	- Memory Compare
BA	- Basic	ME	- Memory Examine
BP	- Breakpoint Print	MO	- MOve memory
BR	- BReakpoint set/reset	MS	- Memory Store
CO	- COntinue	MT	- Memory Test
CS	- CheckSum	RC	- Register Change
FD	- Boot / Floppy Disk	RD	- Return to DOS
FI	- Find 1-5 bytes	RE	- Register Examine
FM	- Fill Memory	SS	- Single Step
HA	- Hex and ASCII dump	ST	- STart single-step
HD	- Hex memory Dump	WA	- Boot / Winchester A
HE	- HElp	WB	- Boot / Winchester B
JS	- Jump to System program	!!	- Force reset

Educational value

The PT-68K will not be presented as an "appliance" computer that you plug in and use with no knowledge of what's going on under the hood. Rather, we are going to spend a great deal of time building the PT-68K section by section, testing and explaining as we go along. Due to its unique construction, you will be able to run machine-language and BASIC programs with a minimal system.

That approach has two big advantages. First, it allows us to spend time discussing and understanding what each section does. More important, though, is the fact that you can catch and fix a mistake or problem soon after it is made. At any stage, you will add just a few IC's, and that will simplify debugging, as well as give you a chance to really understand how various circuits work.

Of course, if you feel that you already possess the necessary expertise, you're free to purchase parts, build the computer, and get to work. Just make sure you are ready!

The bottom line

The PT-68K isn't being built by the millions in the Far East, so you can't expect it to be as cheap as a mass-produced PC clone. On the other hand, it is surprisingly inexpensive, partly because we use PC clone components wherever possible, and also because our motherboard contains much hardware that must be added to most computers on plug-in boards To illustrate how clone components can save costs, an early prototype of the PT-68K-which did not have the PC bus slots-needed a $\$ 220$ hard-disk controlier. The current version allows you to use a standard Western Digital controller that costs about $\$ 90$. Kit prices are summarized in the sidebar.

System overview

The block diagram in Fig. 1 shows the major sections of the PT-68K. In general terms, the diagram describes just about any computer, not just the PT-68K. At this point we won't define some of the terms we'li use (RAM, ROM, etc.) in much detail; a later installment will do so.

The heart of the diagram is the microprocessor, a Motorola 68000. It is driven by a clock, which is nothing more than a highfrequency oscillator that generates a squarewave. The clock synchronizes everything that occurs in the system. In the PT-68K, the clock will most likely be an $8-\mathrm{MHz}$ signal, though it could go as high as 16 MHz

In the PT-68K, two EPROM (Erasable Programmable Read-Only Memory) IC's contain the system software. Unlike RAM (RandomAccess Memory) the contents of an EPROM is not lost when power is removed. When you purchase an EPROM, it is "empty" or erased. But the two PT-68K EPROM's have been programmed with HUMBUG and BASIC. The computer can read and use those programs, but it cannot erase or change them.

RAM (which should really be called RWM, for Read-Write memo-ry-but have you ever tried to pronounce RWM?) is memory in which the microprocessor can store information and then read it back at a later time. Of course, the contents of RAM is usually erased when you turn the power off.

The PT-68K actually has two kinds of RAM: static and dynamic. Many computers use only one or the other, but we use both because each has its advantages. For large amounts of memory, dynamic RAM (DRAM) is cheaper and smaller-without DRAM, it would be impractical to provide one megabyte of memory at any reasonable cost. On the other hand, for small memories static RAM is the right choice because it is much simpler to design with, and therefore the support circuitry is easier to debug.

The minimal PT-68K has a small amount (4K) of static RAM that is contained in just two integrated circuits. Because the static-RAM circuitry is so simple, it will most likely work immediately with no problems. That RAM will allow you to run BASIC and HUMBUG. After the static RAM is working, you can add the DRAM, which consists of thirty-two 256 K IC's, plus a batch of support IC's. If there is a problem with the DRAM, you can use HUMBUG to debug it That kind of "bootstrapping" makes the building of a large system like the 68 K from scratch practical.

There is another reason for providing static RAM; a special clock calendar IC is plug-compatible with the RAM IC we use. So we need only unplug one of the RAM IC's and plug in the clock calendar IC, a MK48T02, which provides not only a clock and calendar, but also some static RAM of its own, and a built-in battery to power the clock and RAM while the computer is off.

I/O interface

Although the block diagram in Fig. 1 shows just a single box labeled I/O Interfaces, the PT-68K's I/O is actual ly quite complex. It consists of two MC68681 DUART's that provide four serial interfaces, one 68230 parallel interface/timer, a 1772 floppy-disk controller, keyboard interface, speaker interface, a number of extra support IC's, the PC interface circuitry, plus the interrupt circuitry, which allows I/O devices to interrupt the 68000 when they need it.

Some microcomputers provide DMA (Direct Memory Access) circuits. DMA is often used when the microprocessor has difficulty keeping up with disk drives and other relatively fast I/O devices. The 68000 has no problem keeping up with the disk drives, and DMA really complicates the computer (and increases its cost), so we chose not to use it in the PT-68K

System buses

As Fig. 1 shows, the two main sets of connections between the microprocessor and the ROM, the RAM, and the I/O interfaces are the data bus and the address bus The term bus is used to signify that a number of parailel wires are used to carry signals simultaneously

The data bus is used to move data of any sort (numeric data, microprocessor instructions, or plain text) between the microprocessor, memory, and $/ / O$ devices. The arrowheads leading from and going to the various functional blocks in the block diagram show the direction that data may flow from various devices. For example, data can only flow out of ROM, but it can flow both into and out of RAM. The data bus is said to be bidirectional because data may flow either into or out of the microprocessor. The address bus, by contrast, is unidirectional, because address information only flows out of not into the microprocessor.

The PT-68K's data bus consists of 16 signals, each of which carries one binary digit (bit). Therefore, the 68000 can transfer an entire 16bit number to or from memory all at once. Other microprocessors handle eight bits, 32 bits, and other values. As we will see, the 68000 handles numbers in 8 -bit chunks (called bytes), 16-bit chunks (two bytes, or a word), and 32 -bit chunks (four bytes, or a longword. When transferring a byte, the 68000 uses only half of the data bus; when transferring a long word, it uses the data bus twice, transferring 16 bits at a time.

The number of bits on a data bus (also called the width of the bus) obviously has a bearing on speed: the wider the bus, the more bits that can be moved at a time, so the faster the computer runs. However, bus width is by no means the only factor limiting speed; the microprocessor's intemal bus width is also important

Early general-purpose microprocessors (including the 8080, the 6800, the 6502, and the Z80) have an eight-bit data bus and also handle most numbers internally in an eight-bit format. For that reason they are called eight-bit microprocessors.

The next generation of microprocessors (including the 6809 and the 8088) still have eight-bit external data buses, but 16 -bit internal buses. That gives them extra power, but they are still bogged down by the slow speed at which they can transfer data to and from memory and I/O devices

The next step includes the 8086, the 80186, and the 80286, processors which handle 16 -bit numbers both internally and externally, and which are properly cal led 16-bit processors

The 68000 is one step higher yet-it has a 16-bit external bus, but a 32 -bit internal bus. The 68008 has the same 32 -bit internal bus as the 68000 , but an external width of only eight bits. That may appear to be a disadvantage, but in cost- and space-sensitive applications, the reduced width can be valuable, because fewer support IC's are necessary.

Last, at the top of the current pyramid are the 80386 and the 68020 , both of which handle 32 -bit numbers both internally and externally. They are true 32 -bit processors.

Internal and external bus width are not the only factors that affect computer speed. A bus that's twice as wide doesn't necessarily mean a computer that's twice as fast, unless you consistently run

FIG. 1-BLOCK DIAGRAM OF THE PT-68K. A functional system can be assembled for $\$ 200$.
programs that make full use of that width. For example, a program that uses many byte-oriented instructions may not operate much faster on a 32 -bit bus than on a 16 -bit bus.

Another factor that can affect overall system speed is the use of a cache. Both the 68020 and the 80386 use a cache, an area of memory within the IC itself that holds instructions or data that are loaded from main memory before they are needed. Older processors generally read data from main memory only at the instant it is needed, and main memory is invariably slower than memory inside the IC. However, the newer processors spend their spare time pre-reading a "ew bytes ahead of themselves, and store those bytes for possible future use. In that way they avoid having to wait for data or instructions to load from main memory. The 68000 and corresponding members of the Intel family have small caches, but they're too small to provide significant savings.

The address bus

The other major bus, the address bus, carries addresses. That is, in order to store data in memory, or read data from memory, the processor must specify exactly where in memory that data is located. That is done with a numeric address, sent out on the address bus. As stated earlier, the address bus is unidirectional However, there is an important exception to that statement: A DMA controller may seize control and supply addresses instead of the microprocessor. A DMA controller allows extremely quick transfer of large amounts of data without involving the microprocessor.

Transfers may occur from a disk drive (or other mass-storage device) to main memory, from main memory to a disk drive, or even from memory to memory. But because the PT-68K has no DMA circuit, we'| say no more about it
The width of the address bus determines the maximum amount of memory a computer can have. If the bus had only three lines, for example, then each address would consist of just three bits. Each bit can be either \emptyset or 1 , so there would be only eight possible addresses: $000,001,010,011,100,101,110$, and 111. Hence the maximum number of addresses would be 2^{3}, or 8

In general, the maximum number of addresses is 2 to the same power as the number of address lines. For example, most 8-bit microprocessors have 16 address lines, so the maximum number of addresses would be: 2^{16}, or 65,536

In electronics, the symbol K stands for multiples of 1000 (a 10 K resistor, for example), but in computers, a K is 1024 (210). So 65,536 turns out to be exactly $64 \mathrm{~K}(64 \times 1024)$ locations

Newer microprocessors have more address lines than their pred ecessors. For example, the eight-bit processors mentioned earlier have 16 address lines, for a total of 64 K of memory. The 8088 and the 68008 each have 20 address lines, for a total of 1 megabyte The 68000 and the 80286 each have 24 address lines, for a total of 16 megabytes. Last, the 68020 and the 80386 have 32 address lines for a total of four billion bytes of physical memory.
As you might expect, the mere width of the address bus is not the only thing that affects system performance. Consider the 20-bit

PARTS LIST

All resistors are $1 / 4$-watt, 10% unless otherwise noted.
R1-R6- 150 ohms
R7-4700 ohms
R8-R10, R12, R13-10,000 ohms
R11-not used
R14, R15- 330 ohms
R16-220 ohms
R17, R18-33-ohm 16-pin DIP package
R19-10,000-ohm 8-pin SIP package
R20, R21, R24, R26-2200 ohms
R22, R23-1 megohm
R25-33 ohms
Capacitors
C1, C2, C6-C62, C64, C67, C68-0.1 $\mu \mathrm{F}$, dis:, ceramic
C3, C4, C5- 47 pF , disc, ceramic
C63-1 $\mu \mathrm{F}, 16$ volts, tantalum
C65- $10 \mu \mathrm{~F}, 16$ volts, tantalum
C68-33 pF, disk. ceramic
Semiconductors
IC1-74LS245 octal bus transceiver
IC2-MC68230P8 peripheral interface/timer
IC3- $3.68-\mathrm{MHz}$ oscillator
IC4, IC10-MC68681 DUART
IC5-WD1772 floppy-disk controller
IC6, IC22, IC32-7406 open-collector hex inverter
1C7-74LS367 hex bus driver
IC8, IC29-1489 RS-232 receiver
IC9, IC30-1488 RS-232 driver
IC11, IC24, IC31, IC33, IC76-74LS175 quad D flip-flop
IC12-7442 BCD decoder
IC13, IC50-74LS74 dual D flip-flop
IC14, IC26, IC51-74LS32 quad 2 -input OR gate
IC15, IC35-74LS00 quad 2 -input NAND gate
IC16-74LS174 hex D flip-flop
IC17-IC19-74LS373 octal latch
IC20, IC27-27128 16K $\times 8$ 450ns EPROM
IC21-6116 $2 \mathrm{~K} \times 8400 \mathrm{~ns}$ static RAM
IC23-74274 dual D flip-flop

IC25-74LS322 8-bit shift register
IC28-6116 $2 \mathrm{~K} \times 8400 \mathrm{~ns}$ static RAM or MK48T02 clock
IC34-74LS138 3-to-8 line decoder
IC36-74LS30 8-input NAND gate
IC37-74LS10 triple 3-input NAND gate
IC38-IC45, IC53-IC60, IC67-IC74, IC80-IC87-256K 150 ns dynamic RAM
IC46-74LS393 dual 4-bit counter
IC47-MC68000P8 microprocessor
IC48-74LS08 quad 2-input AND gate
IC49, IC77-74ALS74 dual D flip-flop
IC52-150ns delay gate
IC62, IC75, IC88-74LS257 quad 2 -input multiplexer
IC61-74S373 octal latch
IC63-16L8 PAL
IC64-74LS139 dual 2-to-4 line decoder
IC65-74LS390 dual decade counter
1C66-74LS04 hex inverter
IC78-16-MHz oscillator
IC79-Optional 20 - or $24-\mathrm{MHz}$ oscillator
IC89-74LS148 8-to-3 line priority encoder
IC90-74LS164 8-bit shift register
IC91-555 timer
IC92-optional $14.313-\mathrm{MHz}$ oscillator
Connectors
J1-J6-62-pin card edge connector (for IBM slots)
J7, J8-40-pin dual header strip
J9-5-pin DIN connector (for IBM keyboard)
J10a. J10b-6-pin power connector (IBM style)
J11, J12, J21, J22-6-pin dual header strip
J13-34-pin dual header strip
J14-J17-not used
J18-4-pin single header
J19, J20, J24, J25-3-pin single header strip
J23-2-pin single header strip
Other components: PC board, cabinet (PC, XT or AT clone), power supply (135 -watt minimum, PC or XT clone).
bus of the 8088 and the 68008 , for example. Both processors can address a megabyte of memory, but the 68008 can do so in one continuous piece, whereas the 8088 splits that memory into 64 K segments. Handling the segmenting greatly complicates a program, and that's why many programs written for the 8088 (Microsoft BASIC, for example) can only use 64 K of memory at a time, whereas BASIC on the 68008 has no such limitation.

So the 68000 can easily handle programs and data that use up the entire 16 megabytes of memory-almost. The reason is that Intel and Motorola processors differ in the ways they handle $1 / O$. In a Motorola-based computer, $1 / 0$ devices connect to the processor in exactly the same way as memory does, and the result is that available memory space decreases slightly. So if a 68000 were to dedicate one megabyte of memory to I/O, there would be only 15 megabytes left for memory.

Intel processors do not have that limitation; they use the entire address range for memory, and they have a separate (usually smaller) set of addresses just for I/O. Some people claim that Motorola's sharing memory and I/O space is a disadvantage, but in practice it makes very little difference, because a given system seldom requires more than a few dozen (or perhaps a few hundred) I/O addresses, and that leaves plenty of space for memory. In fact, in most cases, a 68000 or 68020 has so much unused address space that we can afford to waste thousands-maybe even millions-of addresses on I/O without feeling the pinch.
A list of addresses in a computer and what they are used for is called a memory map. Table 2 shows the memory map of the PT-68K. As you can see, there is still plenty of memory left for expansion, probably much more than most of us would ever care to pay for.

Decoding memory

As Fig. 1 shows, the microprocessor's address bus is split into two sections: part goes to the address decoder, and part goes to the ROM, RAM, and I/O interfaces.

The address decoder's job is to examine the address bus and route a given address to the appropriate circuit. For example, as Table 2 shows, the on-board dynamic RAM occupies addresses 000000 through $\emptyset F F F F F$. Whenever the address decoder sees an address beginning with the hexadecimal digit \varnothing, it recognizes that address as a RAM address, and sends a signal to the RAM that effectively says "Hey, you! This address is meant for you--get to work!" That signal is called an enable or select signal. If it goes directly to an \mathcal{K}, then it is called a chip enable or chip select, often abbreviated CE or CS

The block diagram implies that there is just one address decoder, but in practice most computers split the function among two or more decoders, each of which services just one part of the computer. One reason is that circuit design is easier, but there is a second reason as well: different decoders deal with different parts of the address bus.

For example, to decode the dynamic RAM space, the address decoder need only look at the leftmost hex digit of the address,

PARTS AND PRICES

The following kits and components are available from Peripheral Technology, 1480 Terrell Mill Rd \#870, Marietta GA 30067, 404-9840742.

Basic Kit, PT1, \$200. Contains all parts (except power supply and case) to build the basic $8-\mathrm{MHz}$ PT-68K: double-sided so dermasked silk-screened PC board, MC68000 microprocessor, HUMBUG and BASIC EPROM's, clock oscillator, static RAM, two serial ports, power and signal connectors, IC sockets, resistors, capacitors, and all other components to make a functional system. Add $\$ 20$ for the $10-\mathrm{MHz}$ version, or $\$ 70$ for the $12-\mathrm{MHz}$ version. Please inquire about the cost of the $16-\mathrm{MHz}$ version. The $8-\mathrm{MHz}$ boarc can be updated later to 10 MHz ; conversion to 12 or 16 MHz may be more difficult
First 512K RAM, PT2a, \$90. DRAM controller circuitry and first 512 K of $150-\mathrm{ns}$ RAM ICs with sockets, for 8 or 10 MHz . Second 512 K
RAM, PT2b, $\$ \mathbf{5 0}$. 512 K of dynamic RAM ICs with sockets, can be added at any time. ORAM prices are highly unstable at this time, so prices may vary.

Floppy-disk Controller, PT3, \$100. Floppy-disk controller and all support IC's, connectors, IC sockets, and SK*DOS, which includes editor, assembler, BASIC, RAM disk, disk cache, and utility programs. Disk drives extra.
Parallel port and clock/calendar, PT4, \$50. All parts and IC sockets included.
PC-compatible slots, PT5a, \$40. Includes connectors, support IC's, and sockets for the first three bus slots and compatible keyboard. Three additional connectors, PT5b, \$10. (The slots can be added at any time, but you may want to install them immediately if you have no serial terminai or computer that can act as a serial terminal.)

Full basic system, PT68K, $\mathbf{\$ 4 7 0}$. Includes all circuitry from kits PT1, PT2a, PT3, PT4, and PT5a, as well as the 10 MHz upgrade kit. You needn't purchase the full kit to get started; however we recomimend that options be added in the order described. A bare motherboard with EPROM's and PAL is available for $\$ 170$.

Other components can be obtained through the clone market or from Peripheral Technology: "Baby" AT cabinet, as shown in the accompanying photographs, $\$ 45$; 150-watt power supply, $\$ 60$; ATstyle keyboard, $\$ 60$; Samsung 1252 G amber monitor, $\$ 90$; Herculescompatible monochrome text/graphics card, $\$ 50$; Western Digital hard-disk controller card, $\$ 90 ; 80$-track double-sided 720 K floppydisk drive, $\$ 120 ; 20$ megabyte half-height hard disk, $\$ 295$.

All orders add $\$ 5$ shipping and handling. Heawy items (monitors, disk drives, etc) extra. Georgia residents add applicable sales tax.
that is, the four leftmost bits, which must equal 0000 (a hex \varnothing) for the RAM to go to work.

The ROM-decode signal, by contrast, is derived from seven bits. The ROM occupies addresses F8000 through F9FFFF. The lowest address (F 8000) begins with 1111100 and then continues with 17 zeroes; address F9FFFF also begins with 1111100 but then continues with 17 ones. All other ROM addresses also begin with the bits 1111100 , but have different combinations of zeroes and ones at the end. So any address that starts with 1111100 applies to the ROM. Therefore, whenever the address decoder sees a 1111100 , it sends an enable signal to the ROM.

Hands-on

The preceding serves as a brief introduction to the PT- 68 K , and it indicates the kind of material we'll be covering in future installments. Now we'll discuss some basics of construction. As discussed in the sidebar, the hardware is available in several configurations. If you want (and are able), you can purchase the parts, assemble the computer, and start using it. If, however, you're

FIG. 2-MOUNT THE PT68K on a $12^{\prime \prime} \times 24^{\prime \prime}$ slab of wood.
coming along for the educational ride, you'll want so follow the steps outlined below. You'll want to buy either the basic kit(PT1) or the full kit (PT-68K) The basic kit can be expanded to the same capabilities of the full kit, but with a smalier initial cash outlay. In addition, you'll want to obtain the following:

- A power supply. Almost any supply that can provide five volts at about five amperes will do; however, a PC clone supply is recommended because it provides ample power for adding disk drives
and plug-in boards. It is also about as cheap as you can get, and it has a set of connectors that plug directly into the PC board without having to jury-rig some kluge.
- A $12^{\prime \prime} \times 24^{\prime \prime}$ wooden board to mount the PC board and power supply so you can work on them easily. (See Fig. 2). Don't fasten the PC board to the wood; just hammer two thin brads into the wood so the board's mounting holes slip over them to prevent the board from sliding. The white markers in Fig. 2 indicate which holes to use.
IMPORTANT: do not use any of the other 7 mounting holes yet. Those holes have a ground trace on the bottom of the board, and a +5 -volt trace on the top of the board; if you insert a metal screw or nail into the hole, you may short out the power supply and cause damage. When it is time to mount the board in the cabinet, you will use plastic hardware to avoid a short.
- A voltmeter, logic probe, or oscilloscope would be hel pful, but is not esseritial. If none of those is available, you can build a simple LED-based logic probe right on the board. We'll show you how next time.
- Some thin wire, 30 gauge or so, will be needed for some of our experiments.
- Last, you need some simple hand tools: screwdriver, needlenose pliers, diagonal cutters, and, above all, a good soldering iron, rated at no more than 45 watts. A pencil type iron rated 35 watts or so is good; a temperature-controlled low-voltage soldering station is better. In any case, don't use anything over 45 watts. Good soldering technique is extremely important in a project of this complexity.

When we get together next time, we'll start to build and test the PT-68K.(D4

EDITOR'S WORKBENCH

continued from page 89
dimmer that will blank your screen after a time period you select. And for privacy you can blank the screen at any time by pressing a key. Press any key to restore the screen.

You can use Cruise Control to insert the current time, date, or both, into your current enivronment, be it a word processor, a spreadsheet, or just about any other program. The characters flow into the program just as if you had typed them at the keyboard

A help panel, shown in Fig. 3, that lists all available options, is availble at the DOS prompt. Four "strategies" (also changeable on the fly) help adapt Cruise Control to various environments.

Cruise Control has been part of our AUTOEXEC BAT file since the day we received it. It uses only about 3 K of RAM, and lists for $\$ 39.95$ plus $\$ 3.50$ shipping and handling, from Revolution Software, 715 Route 10 East, Randolph, NJ 07869

COVE SOFTWARE GROUP, PCED

Severai months ago (March 1987, page 95) we mentioned a little program called CED that we discovered on the PCSIG CD-ROM. (The CD-ROM contains more than 10,000 public-domain programs for the IBM family of computers.) CED has now gone commercial; the new incarnation is
called PCED (for Professional Commandline Editor). PCED includes all the features of CED (the most important of which are the ability to edit the currerit command line; the ability to call up previous ones, edit them, and re-execute them; and the ability to define synonyms for single or multiple DOS commands). In addition, PCED adds several new commands, including the ability to load and save its configuration file, the ability to be turned off temporarily, the ability to log every command executed by DOS in a disk file, and more.

CED had provisions for adding external pseudo-commands to DOS; PCED includes several such commands. For example, an optionally installable directory program allows you to get directory listings that are sorted in one of several ways. Another installable pseudo-command allows you to send codes out various communications ports, thereby allowing you to set up a printer, a modem, etc. At $\$ 35$, PCED is a bargain Order from the Cove Software Group (P.O. Box 1072, Columbia, MD 21044) (D

FIG. 3

COMMODORE PULSE GENERATOR

Only three components are needed to make a Commodore C64 into a pulse generator.

JIM BARBARELLO

1your test gear doesn't include a pulse generator it's probably because you just never got around to buying one. Of course, in a pinch you can always use a 555 timer and a few inexpensive components to assemble a quick-and-dirty squarewave or pulse generator. But for about the same cost you can build a simple device that will put your Commodore 64 to work as a stable, accurate source of squarewaves and pulses, and also provide a debounced one-shot trigger source to boot. Actually, the pulse generator consists of the hardware accessory and an accompanying BASIC program.
The software simulates a physical pulse senerator. Its screen display combines a digital frequency indicator with a menu for eight functions that are available through the Commodore C-64's normal function keys. No calibration proceciure is necessary because the pulse generator uses the computer's $1-\mathrm{MHz}$ crystalcontrolled clock for a time base: What you see on the screen is what you get.

Capabilities and limitations

The pulse generator can generate continuous squarewaves in the range of $15 \mathrm{~Hz}-500,000 \mathrm{~Hz}$, or 1-microsecond width pulses with a repetition rate of 30 pps (pulses per second) to 1-million pps. A one-shot function produces a single 1-millisecond pulse on demand. All outputs vary between zero and about 4.3 volts.

The output frequency and waveform is determined entirely by the software. For those of you who might want to experiment with the circuit, we'l take time out to descube how the hardware device uses the Complex Interface Adapter (CIA) IC that drives the computer's user port. With that information and some BASIC programming skill, you can add features such as frequency sweepin3, auto sequencing of discrete frequencies, and repetitive trigser pulses having a programmable interval.

The characteristics of the CIA IC require the output frequency to be equal to $500,000 / \mathrm{N}$, where N is a winole number between 1 and 65535 . For that reason, the pulse generator's output frequency isn't
continuously adjustable. When you key in a desired frequency the sofiware selects the closest value it car generate. As the frequency increases, the difference between the current and the next frequency value increases. For example, at 100 Hz the next value is 100.02 Hz ; at 1000 Hz the next value is 1002 Hz ; at $10,000 \mathrm{~Hz}$ the next value is $10,204 \mathrm{~Hz}$. Considering that the pulse generator ras

Fig.1-THE USER PORT INTERFACE uses o 1 ly thee components and a connector.

FIG.2-ALTHOUGH THE LAYOUT ISN'T CRITICAL, try to approximate this layout to insure the interface will fit on the user port.

F E. 3-THIS IS THE MENU sceen display The frequency or pulses-per-second of the output is shown in the rectangle near the top.
crystal-controlled accuracy, good resolution in the audio range, and a construction cost of well under $\$ 10.00$, its performance will adequate for many applications

The CIA adapter

The Commodore C-64's user port is connected directly to a 6526 CIA, which has two interval timers The pulse generator uses the one called Timer A, which operates just like a standard countdown timer. Before starting, a number representing the count is loaded into the timer. When started, the count begins decreasing by one for each clock cycle. When the count reaches zero, the timer can either stop or reset and begin counting again. Memory locations 56580 and 56581 hold the low and high byte values (respectively) for the count. For example, a count of 1000 would have a high byte value of 3 (the integer part of the product of the count value divided by 256) and a low byte value of 232 (1000 less the high byte value times 256). With a clock rate of 1 MHz , the count can produce either 1000 alternating transitions per second (a squarewave with a frequency of 500 Hz) or 2000 pulses per second.

The value loaded into memory address 56590 controls most aspects of the timer. A value of 2 sets the CIA for pulse output, a value of 3 begins pulse generation, a value of 6 sets the CIA for a squarewave output, a value of 7 begins squarewave generation, a value of 15 produces a single pulse whose width is determined by the value stored in memory locations 56580 and 56581

Once the timer is in operation, it continues independent of the computer until one of the values in memory locations 56580, 56581, or 56590 are changed. Therefore, all control can be performed directly from the BASIC program by monitoring the contents of those locations.

The hardware interface:

The simple circuit shown in Fig. 1 interfaces the signal from the Commodore's user port to the outside world. Transistor Q1, which functions as a current amplifier, buffers the output from user-port connector J1's pin K (Port B6 of the CIA), an arrangement that allows the signal to drive circuits having current demands that would otherwise distort a direct output from the user port. Ali output signals appear at banana-type jacks J 2 (signal) and J3 (ground)

Operating power is provided by the computer itself from the user port's pins 2 (+5 volts) and 1 (ground). The $100-\mathrm{mA}$ maxımum rating of the user port allows the circuit to easily drive a 50 -ohm load.

Assembly

The circuit is so simple that a printed circuit board assembly isn't necessary. Instead, use a $1^{\prime \prime} \times 3^{\prime \prime}$ piece of perforated construction

FIG. 4-THE WIDTH OF THE PULSE OUTPUT is so narrow that the signal is changed to a spike by conventional coaxial cable. Use low-capacitance cables and test leads.

```
10 GOSUB 3000:FRINT:F=500:SP=2:Ps(1)=" FPS ":P$(2)=" הz
20 GOSUB 5000
30 COL=10:RO=9:GOSUES050:PRINTE$" FREQ "W$"~_L"E*"SET"
35 FD=10:GOSUB 5050:PRINTB%" UP "W$"|F1||F2|"E*" FREQ"
40 RD=11:GOSUESO5O:PRINTE$" "W$" "
```



```
55 RD=13:GOSUB 5050:PRINTE$" DOWN "W$"|F3||F4|"B$" PLLSE"
60 RO=14:GOSUE5050:FRINTE$" "W$"L_⿱一土⿰工力"
70 RO=15:GOSUESOSO:PRINTE$" "W$"___ "B$" ONE".
75 RO=16:GOSUB 5050:FRINTE$" RUN "W$"IFSI|FGI"B$" SHOT"
B0 RO=17:GOSUB5050:FRINTB$" "W$" "Lu"
B5 RO=18:GOSUB5050:FRINTE$" "W$",_
90 RO=19:GOSUE 5050:PRIHTE$" STOP "W$"|F7||FE|"E$" OFF"
95 FO=20:GOSUE5050:FRINTE*" - "W*" 
97 FOKE 56590,6
100 CO=12:RO=5:GOSUB 5050:FRINT SP$
110 GET A$:IF A$="" THEN 110
120 G=ASC (A ):IF S<133 OR G>140 THEN 110
130 ON G-132 GOSUE 200,300,400,500,600,700,800,1000
140 GOTD 100
200 CO=17:RO=$0:GOSUB 5050:PRINTB$"F1."
210 F=F-1
220 IF F<1 THEN F=1
230) GOSUB 4000:IF PEEK (197)=4 THEN 210
240 CO=17:RO=10:GOSUB 5050:PRINTWS"F!":RETURN
300 CO=17:RD=13:GOSLB 5050:PRINTB$"F2"
310 F=F+1
320 IF F>33334 THEN F=33334
330 GOSUB 4000:IF PEEK(197)=5 THEN 310
340 CO=17:RO=13:GOSUB 5050:PRINTW$"F2":RETURN
400 REM F5
410 CO=16:RO=15:GOSUB 5OSO:PRINT"_":RO=16:GOSUB SOSC:PRINTB$"AFS &"
420 RO=17:GOSUE50SO:PRINT" ="E*"-W$"M"
430 RO=18:GOSUB 5050:PRINTW$",_, ":RO=19:GOSUB5050:PRINT"|F7|"
440 RO=20:GOSUB5050:FRINT" "
450 PT=PEEK(56590):FOKE $6590,PT OR 1:RETURN
500 REM F7
510 CO=16:RO=18:GOSUB 5050:PRINT" ":RO=19:GOSUB 5050:PRINTE%"IF7 I"
520 RO=20:GOSUB5050:PRINT" ""E$"-"W*""
530 RO=15:GOSUB 5050:PRINTW$"\longrightarrow_":RO=16:GOSUES050:PRINT"|FS|"
540 RO=17:GOSUB5050:PRINT" "
550 PT=PEEK(56590):CO=21:RO=16:GOSUB 5050
560 POKE 56590,PT AND 14:GOSUB E20:RETURN
600 REM F2
```


PARTS LIST

$J=12 / 24$－pin card edge connector friating ocnnecto for the C64＇s user port
J2－Fed banana jack
J3－Elack banana jack
D－2N222z，NPN transistor
R1－ 10,000 ohms， $1 / 2$－watt， 10%
R2－10）ohms， $1 / 4$－watt， 10%
MEcellaneous：Perforated construction boaec，wires， sodder hardware．
NOTE：The $12 / 24$－pin connector（J1）is available tor S3 35 each，and the complete program with addi－ tic nal programming information is evailable on a Co nmodore－mode disk for $\$ 5.00$ trom E\＆BTC， RD\＃1，Box 241H，Tennent Road，Manalapan，NJ $07 i 26$ ．Add $\$ 2.00$ postage and handling with each orser．New eersey residents must include appropri－ ate sales taz．
board．Any kind of perforated board will do，but the kind having roles spaced at $0.1^{\prime \prime}$ intervals and foil pads on one side will make attaching the transistor and resistor easier．In addition to the board material，you will need two $6-32 \times 1^{\prime \prime}$ round－head machine screws and six 6－32 nuts．Mount the two screws through the mounting roles located on either side of $\rfloor 1$ ．If you＇re using a standard con－ nector the screws will thread into the holes，making for firm fit．The threaded ends of the screws should be on the same side of the connector as the solder terminals．Secure each screw to 11 with a rut．Drill a hole on both ends of the board about $\frac{3 / 8 " ~ u p ~ f r o m ~ t h e ~}{8}$ bottom edge．Place one nut on each of the screws about $1 / 4^{\prime \prime}$ from the end of the screw．

Temporarily mount the boardi on the screws and then place one more nut on each of the screws，securing the board about $3 / 8^{\prime \prime}$ away from the ends of J＇s terminals．When you are satisfied with the fit， remove the board，cut it to size，install the components on the board，and attach snort wires for the connections to 11 pins 1,2 ，and K．Reassemble the board to Jl and solder the three wires to the appropriate terminals．The finished unit should resemble the pro－

```
610 CO=20:RO=9:GOSUB 5050:PRINT" "&RO=10:G0SUB 5050:PRINTB$"IF2 |"
620 RD=11:GOSUESOSO:PRINT" "B*"B"W*"""
630 CO=0:RO=4:GOSUB 5050:PRIMTBB$:PRINTBB$:PRINTBB$
635 CO=0:RO=23:GOSUB 5050:PRINT BL$:GOSUB 5050
640 CO=0:RO=23:GOSUB 5050:PRINT BL $:GOSUB 5050
650 INPUT"ENTER NEW FREQUENCY";F9$:F9=VAL (F9$):IF F9<15 OR F9>.SE6 THEN 640
660 GOSUB 5050:PRINT BL$:F=INT (. SE6/F9):GOSUB 4000
670 CO=20:RO=9:GOSUB 5050:PRINTW$" \, ":RO=10:GOSUE5050:PRINT"|F21"
```



```
690 RETURN
700 REM F4
710 CO=21:RO=1.3:GOSUB 5050:PRINTB$"F4":CO=25:RO=12:GOSUB 5050
720 IF SP=1 THEN PRINTW$"SQUARE":RO=13:GOSUB5050:PRINTB$"PULSE":SP=2:GOTO 740
730 FRINTB$"SQUARE":RO=13:GOSUB 5050:PRINTW*"PULSE":SF=1
740 CO=21:RO=13:GOSUB 5050:PRINTW$"F4"
750 PT=PEEK (56590): IF SP=2 THEN POKE 56590,PT OR 4
760 IF SP=1. THEN POKE 56590,PT: AND 11
770 GOSUB 4000:RETURN
BOO REM F6
810 CO=21:RO=16:GOSUB: 5050:PRINTE$"F6":GOSUB 5050
815 POKE 56580, 232:FOKE 56581, 3:PT=FEEK(56590)
820 PT=PEEK (5659,0): POKE 56590;,15
830 FOKE 56590,PT:PRINT W$"F*":GOSUE 4000:RETURN
1000 REM** END
1010 FRINTCHR$(147):RO=12:CO=6:GOSUE5050:POKE 56590,0:POKE 56579,0
1020 FRINTCHR$(18);" GENERATOR OFF ";CHR$(146);" - PROGRAM ENDED."
1030 FRINT:PRINT:PRINT:END
3000 FEM** FORMAT SCREEN=
3010 POKE 53280,6:POKE 53281;6:PRINTCHR$ (147)
3020 B$=CHR$(05)+CHR$(18):BLS=" "+B$+"
3030 PRINTTAB (8);CHR$(05);CHR$(18);" C64 FUNCTION GENERATOR "
3040 PRINTBL$:EB$=" "+B$+" "+CHR$(146)+" "+E$+"
3050 PRINTBE$:FRINTBB$:PRINTBE$:W$=CHR$ (146)
3060 FORI=1TO14:PRINTBL$:NEXT I:PRINT BL$
3070 BL$=" ":RETURN
4000 REM ** FORMAT/PRINT OUTPUT
4010 P$=LEFT$(STR$(1EG/(F*SPy), 8):P=INT(VAL (P$))
4015 IF P=1E6 THEN P $="1000000":GOTG 4050
4020 IF P<1000 OR P>99999 THEN P $=LEFT$(F$+" -",7):GOTO 4050
4030 IF P(10000 THEN P$=LEFTS (P$+" ",5):GOTO 4050
4040 P$=LEFT$(P$+" ",G)
4050 P$=P$+P$(SP)
4060 CO=16:RO=5:G0SUB 5050
4070 H=INT (F/256):L=F-H*256:POKE 56580,L:POKE 56591,H
40B0 PRINT P$:RETURN
5000 REM* CUFSOR CONTROL USIPGG PLOT KERNEL ($FFFO)
5010 DATA 162,0,160,0,24,32,240,255,93,999
5 0 2 0 ~ A = 4 9 3 0 0 : S C = A
5030 READ B:IF B<>999 THEN POKE A,B:A=A+1:GOTO 5030
5 0 4 0 ~ R E T U R N
5050 POKE SC+3, COL:POKE SC+1,ROW:SYE SC
5060 RET:JRN
```

totype shown in Fig. 2. Be sure to tighten all six screws firmly since you don't want the assembly to flex when you're iristalling it on the user port. Most 24-pin connectors make a very tight fit to the user port, so make sure all mounting nuts are tight. Finally, install the adapter to the user port.

The software:

The program listing is shown in Listing 1. It is a relatively lons program, and if you feel that you're not up to keying in so large a program without making errors you can obtain the program on disk from the source given in the Parts List.

When you rur the program, you'll get the screen display snown in Fg. 3. Note that the frequency, which always initial izes at 1033 Hz , is displayed in the small dark rectangle at the top of the display. Below
the frequency display area are representations of the computer's F1 through F\& function keys, with each key's function clearly labeled. On startup, F7 will be highlighted, indicating that the generator isn't running.

Pressing the F1 key once will increease the ouput frequency one interval. Holding the F1 key down will cause the frequenay to continually increase. Similarly, the F3 key causes the frequercy to decrease. When the frequency reaches its upper or lower limit, the display will freeze and you will have to reverse the direction of the frequency selection.

Press the F2 key to get to a desired frequency quickly. The F2 screen display will highlight, the frequency display area will clear, and the prompt Enter New Frequency? will appear. Typing any number between 15 and 500000 resets the frequency to the closest

R-E Computer Admart

Rates: Ads are $21 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}$. One insertion $\$ 825$. Six insertions $\$ 800$ each. Twelve insertions $\mathbf{\$ 7 7 5}$. each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Computer ads are accepted for this Admart.

A Z-80 WORKSHOP MANUAL

BP112-Starting with a review of computer principles, this book describes typical machine-code instructions followed by a detailed description of the Z-80 instruction set. Assembly language program-
 ming is also discussed with examples. 2-80 hex machine-code and assembler instructions are given in tabular form, along with in-our connections for the Z-80 and te associated devices....Order your copy from Electronic Technology Today Inc., PO Box 240, Massapequa Park, NY 11762. Price is $\$ 6.95$ plus $\$ 1.00$ for shipping.

BP181-It is probable that 80% of dot-matrix printer users only ever use 20% of the features offered by their printers. This book will help you unlock the special features and capabilities that you probably don't even know exist. To order your copy send $\$ 6.95$ plus $\$ 1.50$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

COMPUTER ASSEMBLY MANUALS

Eliminate Guesswork! Build with Confidence!

BIG BLUE SEED for IBM ${ }^{\text {w }}$ BUILDERS Parts list, placement diagrams \& instructions for assembling over 75 IBM-compatible bare cards. Latest version includes guides for 640K, Turbo, \& AT MthBds..... \$17.95
APPLE SEED II for APPLE ${ }^{\text {Tu }}$ BUILDERS Instructions for assembling over 85 Applecompatible bare cards including II+ \& Ile MthBds. For all Apple enthusiasts \$14.95 Both for $\$ 30.00$! Also bare cards in stock! Check/money-order, VISA/MasterCard to: NuScope Associates*, Dept RE P.O. Box 790 • Lewiston, NY • 14092

CIRCLE 196 ON FREE INFORMATION CARD

ICs ${ }_{\text {s }}{ }_{\text {P }}$	PROMPT DELVERY!!
-	
-	
OPEN 61/2 DAYS, 7:30 AM-10 Pm: SHIP VIA FED-EX ON SAT.	
	为
\%eameme	

CALL NOW

 ANDRESERVE YOUR SPACE

- $6 \times$ rate $\$ 800.00$ per each insertion.
- Reaches 239,312 readers.
- Fast reader service cycle.
- Short lead time for the placement of ads.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to:
Computer Admart, RADIO-ELEC. TRONICS, 500 -B Bi-County Blvd., Farmingdale, NY 11735.
allowable value. Decimal numbers such as 100.56 are allowed, but commas are not (i.e., 500000 , not 500,000). If a value outside the working range is entered, it will be ignored and the prompt will be repeated. The display area will then show the selected frequency in Hz or the corresponding pulse rate in pps-and remember, the pulse rate is twice the selected frequency in Hz .

The right function

On startup, the frequency is set to 1033 Hz and the square function of F 4 is automatically initralized. Pressing F4 toggles the output between squarewave (Hz) and puise (pps). Again, mote that the puise rate is twice the frequency.

Pressing F6 for ONe SHOT generates a single, 1-millisecond pulse. F6 must be released and then pressed again to generate a second pulse. Pressing F8 clears the screen, causes the screen to display the message GENERATOR OFF--PROGRAM ENDED. turns off Timer A, and removes any signal present from the base of Q1 (thus turning it off).

Scope displays

The level and waveform from the pulse generator can be affected by capacitive loading. The most common source of capacitive loading is using a long shielded cable to feed the output to
another circuit, or to other test equipment. Normally, high test lead or cable capacitance affects only the higher frequencies. If excessive lead capacitance does exist, the resulting waveform will resembie a triangular wave rather than a squarewave, and the signal level will decrease by as much as 25%. For example, a $6400-\mathrm{Hz}$ squarewave fed through a conventional coaxial-cable test lead had sharp rising and fall ing edges. However, the signal shown in Fig. 4 al so started out as a perfect squarewave, but because its frequency is 500 kHz , the test lead's internal capacitance turned the squarewave into a pulse-shaped wave. To avoid capacitive loading, keep cables short, preferably under two feet, and use a low-capacitance oscilloscope test probe.

The capacitive-loading effect will be even more pronounced on short duration pulses. As shown in Fig. 4, a conventional shielded cable turns an essentially rectangular pulse of 20,000 pps into a thin spike.
Finally, keep in mind that the effective load resistance seen by the adapter should not go below 50 ohms. If you are driving a circuit with an input impedance less than 100 ohms, temporarily disconnect resistor R2 so that it does not parallel the input impedance of the circuit being tested, which would result in a total load of less than 50 ohms. Add an SPST switch if you work with low-impedance circuits often \boldsymbol{D}

DESIGNER'S Notebook

Over-voltage indicator

1 get a great deal of mail asking for circuits that can add to the well being of batteries. People want to know how to keep them charged, how to prevent memory effects in $\mathrm{Ni}-\mathrm{Cd}$'s, how to watch out for dying cells, and so on. I thought I had covered just about every possibility until I got a letter asking for a circuit that could be used to indicate an overvoltage condition.

There are many circuits that could do the job, but this is one occasion when simpler is better. You can get LM3914's and LM3915's (bar/dot display drivers) at low prices these days, but if you use one of them, you're still faced with the problem of setting it up for a specific voltage. Not only that, but an LM3914 (or a '15) may be a classic case of overkill.

The minimalist approach

If all you need is a circuit that will light an LED, sound an alarm, etc., when a particular voltage level is reached, the easiest way to get the job done is with the circuit shown in Fig. 1. It has the whole range of good things-it's simple, it's straightforward, it costs next to nothing to put together, and it's totally bulletproof.

It works like this. When the voltage across potentiometer R3 reaches a particular level, Zener diode D1 will start conducting and turn on the transistor. That, in turn, will light the LED. Resistor R2 limits the current through the LED and R1 does the same for the Zener diode. The accuracy of the circuit is mostly a function of how finely you can tune R3. You can use just about any control you want, but a

FIG. 1

FIG. 2
small multi-turn PC-mount device will provide the greatest precision.
By using a variable-voltage power supply, you should be able to set the circuit to trigger within less than a tenth of a volt of the target voltage. The Zener you use isn't critical. For most applications, a $1 / 4$-watt unit will do. The transistor can be any small-signal NPN type. The circuit is so small that it can be installed easily in the case of just about anything. If you want to keep an eye on more than one voltage, you can build several circuits on the same board.
Although the output device is

ARE YOU TIRED OF BEING RIPPED OFF BY FOREIGN KITS WITH POOR DOCUMENTATION AND NO SUPPORT?

FROM

NORTH AMERICAN MADE

The best kit line in America.

- Fully Guaranteed
- Fully documented - easy to understand
- Fully supported
- Something for every level of kit builder.
(Audio, test equipment $\&$ more!)
Send $\$ 1.00$ postage for FREE Color Catalogue to:

INVERTOR TECHNOLOGY,
17. North 2128 Pines Road,
Spokane. Wash., 99206
(509) 928 -9384
or, INVERTOR TECHNOLOGY
P.O. Box 3874, Station "B"
Calgary, Alberta T2M 4M5
(403) $932-5626$
DISTRIBUTOR ENQUIRIES WELCOME

CIRCLE 208 ON FREE INFORMATION CARD

NIow you can train at home in spare time for a money-making career as a TV/VCR Repair Specialist. No need to quit your job or school Everything is explained in easy-to-understand lan guage with plenty of drawings. diagrams and photos. We show you how to troubleshoot and repair video-cassette recorders and TV sets, how to handie house calls and shop repairs for almost any make of television or VCR. You learn about TV receivers, tuners and antennas, x-ray emission, the rece:vers, tuners and antennas, x-ray emisionulses characteristics of sound, how electrical impulses
are converted into a TV picture, and much, much are converted into a TV picture, and much, much
more. Tools are included with your course so you can get "hands-on" practice as you follow the lessons step by step. Send for free facts about opportunites in TVVCR Repair and find out how you can start making money in this great career

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 800.00$ per each insertion
- Reaches 239.312 readers
- Fast reader service cycle.
- Short lead time for the placement of ads

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to Engineering Admart, RADIO-ELEC TRONICS, 500-B Bi-County Blvd., Farmingdale, NY 11735

CIRCLE 182 ON FREE INFORMATION CARD

CIRCLE 183 ON FREE INFORMATION CARD

F'CC IICLINSE PRRI'PARA'I'ON

The FCC has revised and updated the commercial license exam 'The NF, PXAM covers updaled rules and regulalions transistor and digital circuilry TIIF GFNFRAL RADIOTELEPIIONE: OPFRATOR LICFNSE - STUDY GUIDE contains the necessary preparation for ONLY $\$ 25.00$

ASK ABOUT OUR OTIFR STUDY PROGRAMS
WPT PUBLICATIONS
979 Young SI reet
Woodlurn, OR 97071
Phone (503) 981-6122
CIRCLE 191 ON FREE INFORMATION CARD

LINEAR IC EQUIVALENTS \& PIN CONNECTIONS

BP141—Shows equivalents \& pin connections of a popular user-oriented selection of European. American and Japanese liner IC 's 320 pages, 8×10 inches. $\$ 12.50$ Plus $\$ 2.75$ shipping. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park. New York 11762-0240.

The same restrictions apply to the transistor. Make sure that its rated collector-emitter voltage exceeds any voltage you expect to apply to the circuit

Advanced uses

One consequence of keeping the circuit so simple is that it's very fast, so you can use it for other things. For example, you can have the transistor switch in some sort of circuitry to drop the voltage in your circuit to a safe level. And a bit of thought should let you add to the circuit and make an electronic fuse.

That's possible because the overvoltage indicator draws very little current. Ordinarily you would connect it across the battery or power supply. But, because it uses so little power, you can use il to monitor the voltage just about anywhere in a circuit.

Figure 2 illustrates the basic idea. Even though the monitor is designed to sense excess voltage, it can sense excess current flow by monitoring the voltage across a component. Make sure that V1 exceeds V2 by at least six volts; otherwise you may have to use a different Zener.

R-E

COMMUNICATIONS CORNER

continued from page 33

MUX sends the digital signals down the fiber-optic path to the receiving MUX, which routes each data block to its specific restorer. The receiving MUX knows which data block goes where because of the header.
Because it's the header that determines the routing, the data or bit groups need not be sent in any particular order. As shown in Fig. 1, the transmit MUX might organize the signal blocks in their most efficient progression. In the example shown, although inputs $1,3,7$ and 8 are being MUXed, the data group order at a particular time period is $1,7,3,6$.
A restorer in the receive MUX puts together however much data it's designed to handle and passes it through to the proper outgoing line in digital form. That's an important point to keep in mind: The receiving MUX simply recreates the original digital signals that were input to the sending MUX; but after the receiving MUX, the devices must know what to do with the data.
Assume for the moment that the sending MUX is at the telephone company's switching center and the receiving MUX is in your home. At any given moment the following could be taking place: The signal on Line 1 might be the communications circuit between your personal computer and the bank's mainframe (you're untangling your credit-card bill). Line 3 is a digitized-TV download of pay-per-view sports (junior is watching the hockey game he used to see for free before all forms of entertainment were sold out to pay-perview). Line 6 is a pay-per-copy download from the local record store to your daughter's digital tape recorder. Line 7 is Mom talking to her Mom via a long-distance provider, and both are using digitizing telephones; that is, their output is a digital representation of the voice so that the signals can be sent directly through, and to, digital telephone equipment and personal computers.
Now that is a lot taking place at
the same time on the same circuit, and all at very high speed; yet, it's made possible because fiber optics are inherently a high-speed, wide-bandwidth medium. I, for one, cannot conceive of the same facility using wires, and I'm only talking about 200 megabits $/ \mathrm{sec}$. What's more, since 1 gigabit/sec is easily accomplished today, imagine the speeds that will be available next year.

Noise free

In addition to the advantage of speed, fiber optics provides its signals with a noise-free environment, something almost impossible to attain with long metallic lines even when they are shielded. More than that, a fiber-optic cable passing through an area of high electrical disturbance, such as lightning, will not pick up electrical noises; nor will a fiber-optic line radiate interference-a common occurrence when passing digital signals through wires. Not only do fiber optics prevent interference to nearby receiving equipment, because there is no radiation of any kind the filament is secure; external equipment cannot "read" the data in a fiber-optic filament. Short of actually cutting into the filament, there is no known means for unauthorized interception of the signals flowing in a fiber-optic line.

Different wires

One of the surprising things about consumer fiber-optic circuits is that they are not much more difficult to install than conventional metallic wiring. Home-and-office fiber-optic cables look very similar to conventional wire cables, and they can even be stapled to mouldings, door jambs, etc. A four- or six-filament fiberoptic cable terminated on both ends by a connector looks very similar to a four- or six-wire metallic cable that's terminated with standard modular plugs. Even the fiber-optics LED-equipped sender connector, and the diodeequipped receiver connector, is just about the size of a modular plug. So as far as home or office wiring is concerned, one kind of line is about as easy to install as the other.

R-E

\#224-50 CMOS IC PROJECTS \$5.25. These IC's are suitable for an extraordinary range of applications. This book shows you just how much you can do with them.

$4 \square$ BP59-2ND BOOK OF CMOS IC PROJECTS $\$ 5.00$. Still more ways to use these versatile devices. None of these projects overlap those in book \#224. The pair make a wonderful circuit reference set.

New Ideas

Outdoor light controller

most automatic yard lights are controlled using just a simple photocell. However, since the ambient light levels at dawn and dusk change rather slowly, that approach usually results in some flickering just before the light fully locks on or off, which can significantly shorten bulb life. That can be avoided by using the controller shown in Fig. 1. That circuit snaps the light on or off, depending on whether ambient light levels are rising or falling

How it works
The key to the circuit's operation is an optocoupler made up of a

FIG. 1

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications. Radio-TV. Microwave. Computers. Radar. Avonics and more! You don't need a college degree to qualify, but you do need an FCC License. No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

COMMAMD PRODUCTIONS

FCC LICENSE TRAINING, Dept 90
P.O. Box 2223, San Francisco, CA 94126

Please rush FREE details immediately! NAME
ADDRESS
CITY

One tree can make One tree can make
3,00000 matches.

One match can burn 3,000,000 trees.

W.S. Jenks \& Ungar bring you temperature controlled, anti-static soldering with a 2-year warranty and a great price!

This soldering system can be tailored to fit your job requirements by means of interchangeable handles and tips. With a variable temperature range of 450 to $850^{\circ} \mathrm{F}$, it features electronic control and 24 volt at the handle. Handles have quick disconnect plugs. A 2 -position switch on the power base matches the correct calibration to the proper handle. Meets MIL-S-45743E, WS 6536E and DOD-STD-2000-1B, and is ESD safe
Model 9920AS includes a traditional macro-size handle and heater barrel which is well suited for general electronic and standard soldering applications. Call TOLL.FREE for other handles and tips to expand this versatile soldering system.

TOLL-FREE 1-800-638-6405

1933 Montana Ave. NE Washington DC 20002 (202) 529.6020 TELEX: 89-2667 FAX: (202) 832-3411
neon bulb (NE2 type) and a CdS photocell whose resistance varies inversely with light from 10 K to 100 K ; those components are enclosed in a light-tight housing. A Diac/Triac combination is used to provide the snap-switch effect. A second CdS photocell acts as the main sensor.

As evening approaches the resistance of R6 begins to increase. When it reaches a threshold level, which is set by adjusting R1, the Diac triggers the Triac and causes the neon bulb to light. Even a momentary flicker of the bulb is sufficient to reduce the resistance of R5, causing the Diac to trigger the Triac, which lights the neon bulb, and so on.
As morning approaches, the process is reversed. The resistance of R6 begins to decrease until it drops below the threshold level. That causes the Diac to cease triggering the Triac, which extinguishes the bulb, which causes the resistance of R5 to increase, and so on.
Most of the components can be mounted on a piece of perforated
construction board and placed within a small experimenters box. Parts placement is not at all crítical. All resistors, except the potentiometer and the photocells are $1 / 2$ watt units. Once the threshold level for the circuit has been established, the potentiometer can be replaced by a fixed resistor of the appropriate value. Before mounting R5 and NE1, place them in a light-tight enclosure. For my unit, the two were simply wrapped together using some black electrical tape.

Mount R6 so that it can be illuminated by the ambient light. However, take care to shield it from any artificial lighting. In my installation, the unit was mounted inside the lamp post , with the sensor looking out through a conveniently placed plastic lens.
To set up the unit, simply adjust the setting of R1 at dusk until the Triac is triggered. Remember that you are working with line voltages in this circuit, so take the appropriate precautions to protect yourself and others from potentially dangerous shocks.-E.J. Holtke

THE MOST POPULAR WIRE-WOUND CB ANTENNAS IN THE WORLD

Because...they perform!

FACT

"When CB was legalized in England, 'Firestik' antennas were barred from sale because the emitted signal was too strong. Fortunately, no other country including the U.S.. limits antenna efficiency.

YOU CAN HAVE SECOND BEST OR, 'Firestik'!

Call or Write for FREE Catalog
'Firestik' Antenna Company 2614 East Adams
Phoenix, Arizona 85034
(602) 273-7151

MILIONS OF SATISFIED OWNERS

CIRCLE 100 ON FREE INFORMATION CARD

> WED LIKE TO REMIND YOU THAT THE UNCENSORED CONTENT OF THIS MAGAZINE IS MADE POSSIBLE BY THE CONSTITUTION OF THE UNITED STATES.

THE CONSTITUTION
The words we live by

To leam more about the Constitution write: Con stitution. Washington. D.C. zo509. The Commis sitution, he Biecontennial of The LS. Constitution
sion

TRANS-AM

FLIECTTRONICS

383 CANAL ST NYC, NY 10013 R (212) 226-3893 10013 nemer

ELECTRONIC KITS
 10 LED CHASER KIT-10 LEDS CHASE IN ONE DIRECTION AT VARIABLE SPEEDS. SKILL LEVEL.

 EASYalternating flasher kit-2 9V bulbs FLASH alternately at a variable speed GREAT FOR MODEL TRAINS. SKILL LEVEL - EASY

Starburst Kit- 25 LEDS IN THE SHAPE OF A STAR OSCILLATING AT VARIABLE SPEEDS. SKILL LEVEL - HARDER \$14.95
16 LED BACK AND FORTH KIT-16 LEDS CHASE BACK AND FORTH AT VARIABLE SPEEDS. SKILL LEVEL - HARDEST.
ALL KITS COME WITH PC BOARD AND ALL PARTS AND DIAGRAM NECESSARY FOR CONSTRUCTION THESE KITS REQUIRE 9 VOLTSDC. PLEASE SPEC IFY RED GREEN OR YELLOW
SWITCHING POWER SUPPLY-BUILT FOR APPLE III THIS UNIT MEASURES $41 / 2 \times 17$ - 3 HIGH SWITCHABLE FOR 110 OR 220VAC COMPUTER TYPE PLUG FOR THIS UNIT ADD $\$ 3.95$. VALUES ARE-+12VDC@ 2.5 AMPS , -12VDC (a. 0.3 AMPS . +5 VDC @ 4 AMPS. $-5 V D C$ (a 0.25 AMPS. WAS \$49.95 NOW \$24.95!
TELEPHONE LINE TESTER-THIS SMALL UNIT ALERTS YOU TO PROP ER CONNECTION OF PHONE LINES USES LED INDICATOR. \$4.95 EACH

PLUG IN WALL TRANSFORMERS
(ALL PLUG DIRECTLY INTO 117 VAC) GVDC © 500 MA 12 VDC @ 300 MA
12VAC@930 MA $\$ 3.95$
$\mathbf{\$ 3 5}$ $\begin{array}{r}\$ 3.95 \\ \$ 4.95 \\ \hline\end{array}$ 14VDC @ 500 MA CHECK VISA.MC/AMEX OK. ALL ITEMS SUBJECT TO PRIOR SALE

MARKET CENTER

FOR SALE

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc Huge selection. Free brochure MENTOR-Z, 135-53 No. Blvd., Flushing. NY 11354
TV tunable notch filters. free brochure. D.K. VIDEO, Box 63/6025, Margate, FL 33063. (305) 752-9202.
DESCRAMBLER catalog. All brands. Special combo Jerrold 400 and SB3 $\$ 165$. Descrambler kit $\$ 39.00$ (assembles in half hour). Send $\$ 1.00$. MJ INDUSTRY, Box 531, Bronx, NY 10461.
IS it true... Jeeps for $\$ 44$ through the government? Call for tacts! 1 (312) 742-1142, ext. 4673
OLDTIME radio programs on high quality tapes. Comedy! Adventure! Music! Free catalog CARL F. FROELICH, Heritage Farm. New Freedom. PA 17349.

TEST equipment, reconditioned. For sale. $\$ 1.25$ for catalog. WALTER'S, 2697 Nickel. San Pablo, CA 94806. (415) 724-0587

ROBOT! kits. Books and Plans! Learn to build your own robots. Free catalogs contain hundreds of affordable robot systems. Explore the world of robotics today. Catalog: CEARGS-ROBOTS!, POB 458. Peterborough, NH 03458. (603) 924-3843.

LASERS, components and accessories. Free catalog. M.J. NEAL COMPANY, 6672 Mallard Ct. Orient. OH 43146.
TUBES. new, unused Send self-addressed, stamped envelope for list FALA ELECTRONICS, Box 1376-2, Milwaukee. WI 53201.
DECODE nearly any single level Gated Pulse signal with our new super simple circuit. Works on In-band. Out-band. AM or FM pilot tone-use with Hamlin, Jerrold, Sylvania, Eagle. Complete plans and theory only $\$ 13.50$ plus $\$ 1.50 \mathrm{P} \& \mathrm{H}$. PC boards and kits available ELEPHANT ELECTRONICS INC., Box 41865-J. Phoenix, AZ 85080 (602) 581-1973.

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10MFM conversions, repairs, books, plans, kits, high-performance accessories. Our 11th year! Catalog \$2.
CETCINTEANAMOINAL, OIO. BINX 31500RE. PHOENIX, AZ 85046

SIZZLING deals: Zenith (The Real Thing): Jerold Oak Scientific Atlanta. No Michigan Sales HOTRONICS (313) 283-4299.
FLASHLIGHT that needs no batteries measures 5^{\prime} $\times 3^{\prime}$ ideal for every situation money back guarantee \$10.-SAMUELS ENTERPRIZES, 724 East 231 Street. Bronx. NY 10466.
HACKING, crashing, pirating, and phreaking. Who's doing it, why they re doing it, and how they're doing it. Sample programs, phone numbers, and the tools of the trade. Hacker's Handbook, \$12.95. Computer Underground, $\$ 14.95$. $\$ 1$ postage to CABLETRONICS, Box 30502R, Bethesda, MD 20814.

CABLE TV converters. Scientific Atlanta, Jerrold. Oak, Zenith, Hamlin. Many others. New Video Hopper "The Copy Killer." Visa. M/C \& Amex accepted. Toll free 1 (800) 826-7623. B\&B Inc., 10517 Upton Circle, Bloomington. MN 55431.
NEW product protects electronics from lightning Free details. GIFT SHOP, 1301 2nd Ave. \#2R. Rock Island. IL 61201.
SURVELILLANCE-Counter, Security. 52 prod-ucts-bulletproot to wireless! Catalog $\$ 2.00$ SPYPRO, 042ER, POB 45521, Seattle, WA 98145 0521.

ZENITH SSAVI, ready to go $\$ 100.00$ plus shipping,
order C.O.D. 1 (305) 752-9202.

SILVER solder syringe just add heat \$13.95. MISCO, 7619 Detour, Cleveland, OH 44103

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to: Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735

PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 23.00$.
() Plans/Kits () Business Opportunities () For Sale
() Education/Instruction () Wanted () Satellite Television
()

Special Category: $\$ 23.00$

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15 (\$42.75)
$16(\$ 45.60)$	$17(\$ 48.45)$	18 (\$51.30)	$19(\$ 54.15)$	$20(\$ 57.00)$
21 (\$59.85)	22 (\$62.70)	23 (\$65.55)	24 (\$68.40)	25 (\$71.25)
26 (\$74.10)	27 (\$76.95)	$28(\$ 79.80)$	29 (\$82.65)	30 (\$85.50)
31 (\$88.35)	32 (\$91.10)	33 (\$94.05)	34 (\$96.90)	35 (\$99.75)

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.)

Card Number
Expiration Date

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 2.85$ per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. 5% discount for same ad in 6 issues: 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 2.30$ per word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold tace (not available as all caps) 50 c per word additional (20% premium). Entire ad in boldface, add 20% premium to total price. TINT SCREEN BEHIND ENTIRE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: add 45% premium to total price. EXPANDED TYPE AD: $\$ 4.30$ per word prepaid. All other items same as for STANDARD COMMERCIAL RATE. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: add 25% premium to total price. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD; add 45% premium to total price. DISPLAY ADS: $1^{\prime \prime} \times 21^{1 / 4}-$
 $\$ 320.00,2^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 640.00: 3^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 960.00$. General Information: frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS
USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER
WITH PERMANENT ADDRESS AND PHONE NUMBER: COPy to be in our hands on the 12th of the third month preceding the date of the issue. (i.e., Sept. issue copy must be received by May 12th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day.

CHECK US OUT-WE'LL MEET OR BEAT THE OTHER'S ADVERTISED WHOLESALE OR RETAIL PRICES!

Pacific Cable Co., Inc.
$73251 / 2$ Reseda Blvd., Dept. R-10 Reseda, CA 91335
(818) 716-5914 • (818) 716-5140 - NO COLLECT CALLS! •
IMPORTANT - When ordering, please have the make and model number of the equipment used in your area-Thank you!
*Call for availability
Prices subject to change without notice
Jerroid is a registered trademark of General Instruments Corp.

Quantity	Item Output Channel	Price Each	TOTAL PRICE			
						California Penal Code \#593-D forbids us from
:---						
shipping any cable descrambling unit to anyone						
residing in the state of California.						
Prices subject to change without notice						

Name
Address \qquad City
State \qquad Zip
Phone Number (
$\square C . O . D$.
\square Visa
\square Mastercard
Acct. \#
\square Money Order
Exp. Date

SCIENTIFIC Atlanta cable users series 85008550 get all channels instructions for simple modification costs under $\$ 10.00$ to make. Complete instructions. Send $\$ 10.00$ no checks to K.F. SPECIALTIES, P.O Box 443, Forked River, NJ 08731

SURPLUS auction bid kit $\$ 1.00$, ends 11/21/87. Reserve your 1988 parts catalog. LYNBAR INDUSTRIES, 205 Main, Box 822, St. Joseph, MI $49085-$ 0822
PHOTOFACT folders, under \#1400 \$3.00. Others \$5.00. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554
CUSTOM front panel nameplates tor your projects For details: J \& E ENTERPRISES, 2457 N. Marmora, Chicago, IL 60639.
ASSORTMENT \#103, (February '84 article) printed circult, toko colls, transistors, IC's, diodes, power supply, $\$ 25.00$. Five/ $\$ 112.50$. Shipping $\$ 3.00$ JIM RHODES INC., P.O. Box 3421. Bristol, TN 37625

Ouality Microwave TV Antennas

Super High Gain System $\$ 99.95$ (+ shipping) AMR High Gain System $\$ 7995$ (+ shipping) Muilti-Channel 1.9 to 2.7 GHz
Dealerships, Oty. Pricing. Replacement Parts
Philliss-Tech Electronics
P.O. Box 8638 - 8cuttsdale, AZ 86252 (602) 947-7700 |\$300 Credit all phone ordersl| warranty MasterCard - Viso - COD's

VIDEO scrambling techniques, the original "secret manual" covers Sinewave, Gatedpulse, and SSAVI systems. 56 pages of solid, useful, legible information, only $\$ 14.95$ ELEPHANT ELECTRONICS INC., Box 41865-J, Phoenix, AZ 85080. (602) 581-1973.
Tl-99/4A software/hardware bargains. Hard to find items. Huge selection. Fast service. Free catalog. DYNA, Box 690, Hicksville. NY 11801

REMOVES VOCALS FROM RECORDSI Now You can sing with the world's best bands! The Thompson Vocal Eliminator can remove most or virtually all of a lead vocal from a standard stereo record and leave the background!
Write or call for a free brochure and demo record. LT Sound, Dept. R-1, P.O. Box 338, Stone Mountain, GA 30086 (404) 493-1258

> COMMODORE chips, distributor factory fresh (e.g. 6526-\$9.95 and many others). C64 power supplyS27.95..."Commodore Diagnostician", a complete chart for diagnosing faulty IC's $\$ 6.95$. Send for complete chips/parts catalog. Kasara MICROSYS, INC., 33 Murray Hill Drive, Spring Valley. NY 10977. (800) 642-7634 (outside NY) or (914) 356-3131

> APEX ${ }^{\text { }}$ screwdriving bits. Any size. Complimentary illustrated list. R. SHOCKEY'S, 5841 Longford, Dayton, OH 45424 (513)236-2983
> MICROWAVE antennas, multi-channel $1.9-2.7 \mathrm{ghz}$ DUAL POLARITY Now only $\$ 49.95$. Oldest and largest manufacturer. STAR ELECTRONICS CORP., Call 1-800-247-1151 or 1 (602) 939-1151
> TUBES, name brands, new 80% off list. KIRBY, 298 West Carmel Drive, Carmel, IN 46032
> FLASH! Xenon Strobes. Laser Equipment! Colored microminiature fluorescent lamps. Ultraviolets Electronic kits. Free catalog. Write/call! (203) 672 0123. ALLEGRO ELECTRONIC SYSTEMS, 3E Mine Mountain, Cornwali Bridge, CT 06754

TUBES "Oldest." "Latest." Parts and schematics SASE for list STEINMETZ, 7519 Maplewood Ave RE Hammond, IN 46324
TAP complete set volumes 1-84 quality copies $\$ 100.00$ ppd PEI, P.O. Box 463, Mt. Laurel, N 08054.

TUBES 59c. Year Guarantee. Free Catalog. Tube Tester \$8.95. CORNELL, 4215 University, San Diego, CA 92105
THIS IS A REGULAR CLASSIFIED AD WITH A TINT BACKGROUND. To have youf ad appear tike this one, there is a 25% premium

PLANS AND KITS

MOBILE TELEPHONE, plans 59.95 , with $\mathrm{PC} /$ brds \$24.95. Paging Controller, plans $\$ 7.95$, with PC brds $\$ 17.95$. All using your 2 -way radio. Parts avail able. CURRENT DEVELOPMENT CORP., Box 384, Westmoreland, NY 13490
HI-FI speaker systems, kits and speaker compo nents from the world's finest manufacturers. For beginners and audiophiles. Free literature. A\&S SPEAKERS, Box 7462. Denver, CO 80207. (303) 399-8609.
VOICE disguisers! FM bugs! Telephone transmit ters! Phone snoops! More! Catalog \$1.00 (Refunda ble): XANDI ELECTRONICS, Box 25647, Dept 60S, Tempe, AZ 85282
CATALOG: hobby broadcasting/1750 meters/ham CB: transmitters, antennas, scramblers, bugging devices, more! PANAXIS, Box 130 -F10, Paradise, CA 95967.
FREE catalog 99-cent kits-audio, video, TV computer parts. ALLKIT, 434 W . 4 th St., West Islip NY 11795.
STRANGE stuff. Plans, kits, new items. Build satel lite dish $\$ 69.00$. Descramblers, bugs, adult toys Informational photo package $\$ 3.00$ refundable. DI RIJO CORPORATION, BOX 212, Lowell, NC 28098

LExprites

PIEZO TWEETER Mig \#KSN1DOSA, $3 \% \times 31 /{ }^{1 / 2}$. No crossover required. 50 watis max
imum input power. \#270.010 \quad \$495 $\quad \$ 395$

CROSSOVERS

2. Way 30
$\$ 260-190$
3. Way 60 wa

3- Way 60
$\$ 260-200$
3-Way 100 w
$0260-210$
$\$ 1250$
5395
$\$ 750$

1-800-255-3525
In Ohio: 1-800-322-3525
Local: (513) 222-0173

[^5]HARDWARE AND ELECTRONICS

(1) PIONEER

15" WOOFER 20 oz . magnet. 60 watis RMS. 90 Watts max. 8 onm impedan
voice coil. $25-2000 \mathrm{~Hz}$. *290-160 $\$ 3095$ $\$ 28^{40}$

(PIONEER

51/4" CUP MIDRANGE uned cup. Paper cone, 1 "voice coil 93 02, magnet. 50 watts RMS,
70 watts max. Response: $320-6000$ Hz 8 ohm impedance $\quad \$ 995$

THE NEW 65/9028 VT ANSI VIDEO TERMINAL BOARD!

* FROM LINGER ENTERPRISES *

A second generation, low cost, high performance, mini sized, single board for making your own RS232 Video Terminal. This highly versatile board can be used as a stand alone video terminal, or without a keyboard, as a video console. VT100, VT52 Compatible.
FEATURES:
MICRO SIZE!
Uses the new CRT9128 VIdeo Con-
troller driven by a 6502 A CPU

- On-Screen Non-Volatlle Configuration
* 10 Terminal Modes: ANSI, H19, ADM-5, WYSE 50, TVI-920, KT-7 HAZ-1500, ADDS 60, QUME-101, and Datapoint 8200
* Supports IBM PC/XT, and Parallel ASCII Keyboards
- Supports standard 15.75 kHz (Horiz.)
- Composite or Split Video ($50 / 60 \mathrm{~Hz}$)
* 25×80 Format with Non-Scrolling User Row
* Jump or Smooth Scroll
* RS-232 at 16 Baud Rates from 50 to 19,200
- On Board Printer Por

Wide and Thin Line Graphics
w/100 Page Manua Reverse, Underline and Blank

- 10 Programmable Function Keys and Answerback message
* 5×8 Character Matrix or 7×9 for IBM Monitors

$1800-15.000 \mathrm{~Hz}$ response. 35 watts RMS 50 watts max 8 ohm impedance			coil 93 oz, magnel. 50 watts RMS 70 watts max. Response: $320-6000$ Hz 8 ohm impedance		
-050	\$650	\$590	*280-020	\$1150	

FREE CATALOG

Call or write today for your free catalog containing speakers, sem conductors. CATV products, tools, hardware. TV-VCR parts, and more.

JERROLD gated pulse theory. Twelve information packed pages covering DI \& DIC converter operation. Includes introduction to trimode system. $\$ 6.95$ plus $\$ 1.50$ postage and handling ELEPHANT ELECTRONICS INC., Box $41865-\mathrm{J}$, Phoenix. AZ 85080. (602) 581-1973

DESCRAMBLE the latest video cassette copy-pro tection scheme. Our simple line zapper circuit takes the jitter out of your picture. Complete plans and theory only $\$ 13.95$ plus $\$ 1.50$ postage and handling PC board and complete kits also available ELEPHANT ELECTRONICS INC., BOx 41865-J, Phoenix, AZ 85080. (602) 581-1973.

VIDEOCIPHER II manual 119 paqes- $\$ 27.45 / \mathrm{Oak}$ "Orion" manual 120 pages- $\$ 22.45 /$ Macrovision "Stabilizer"- $\$ 99.95$ / Plans-kits-descrambling books. Catalog- $\$ 2.00$. MICROTRONICS, BOX 6426. Yuma, AZ 85364-0840.

PLANS. Plasma display, H.V. generator, CB modulator, Linear amplifiers, Pain field generators, shock sensor. Plans for all $\$ 20.00$ complete. AET, Suite 173, 5800-A, North Sharon, Amity Rd., Charlotte, NC 28215

ELECTRONIC house bimonthly magazine covering smart houses, integrated electronics, security, energy sensors, more. Send $\$ 14.95$ for one year subscription to: ELECTRONIC HOUSE, Dept. RE, 524 East McKinley, Mishawaka, IN 46545. (219) 256-2060.
NOVELTY type electronic projects for the gadgeteer. Weird, unusual and fascinating. Free information. TAYLOR ELECTRONICS, P.O. Box 1612, Destin, FL 3254
ROBOTMAN build him! Easy plans. $\$ 20.00$ gets you started. Send to: JUPITER ENGINEERING, 14550 Haynes, Suite \#204, Van Nuys, CA 91411.
PROJECTION TV convert your TV to project 7 foot picture. Results comparable to $\$ 2,500$ projectors... Total cost less than $\$ 30.00$. Plans and $8^{\prime \prime}$ Lens \$21.95....Ilustrated information free...MAC. ROCOMA-GB, Washington Crossing, PA 18977. Creditcard orders 24 hrs . (215) 736-3979.

Cable TV Converters Why Pay A High Monthly Fee?

 Jerrold Products include "New Jerroid Tri-Mode," SB-3, Hamlin, Oak VN-12, M-35-B, Zenith, Magnavox, Scientific Atlanta, and more. (Quantity discounts) 60 day warranty. For fast service C.O.D. orders accepted. Send SASE (60 cents postage) or call for info (312) 658-5320. Midwest Electronics, Inc./, HIGGINS ELECTRONICS, 5143-R W. Diversey, Chicago, IL 60639. MC/ Visa orders accepted. No lllinois orders accepted. Mon.-Fri.-9 A.M.-6 P.M.CSTDESCRAMBLING, New secret manual. Build your own descramblers for Cable and Subscription TV. Instructions, schematics for SSAVI, gated sync, sinewave. (HBO, Cinemax, Showtime, etc.) \$8.95 $+\$ 1.00$ postage Catalog $\$ 1.00$. CABLETRONICS, Box 30502R, Bethesda, MD 20814.
SATELLITE descrambling manual, Video Cypher II. Schematics, thorough explanation of digital audio encoding, EPROM code, DES. (HBO, Cinemax Showtime.) $\$ 10.95+\$ 1.00$ postage CABLE TRONICS, Box 30502R, Bethesda, MD 20814
DETECTIVES, experimenters. Exciting new plans Hard to find micro and restricted devices. Large catalog $\$ 5.00$ refundable on 1st order. WILSON, P.O. Box 5264, Augusta, GA 30906.

FREE microprocessors, memory chips, etc. Free electronics magazine subscriptions. Free education in computers. For information write MICROSAT CORPORATION, 2401 N.E Cornell, Bldg. 133, Mail Stop 125, Hillsboro, OR 97124

MINIATURE electronic devices, like James Bond's. Catalog \$2.00. F\&P ENTERPRISES, Box 51272 Palo Alto, CA 94303-L
BUILD this five-digit panel meter and square wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430.

SATELLITE TV

CABLE TV Secrets-the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers converters, etc. Suppliers list included \$8.95. CABLE FACTS, Box 711 A, Pataskala, OH 43062.
SATELLITE TV receiver kits! LNA's! Instructions! Schematics! Catalog $\$ 1.00$ (refundable): XANDI ELECTRONICS, Box 25647, Dept. 21W, Tempe. AZ 85282.
SATELLITE TV equipment. Buyers quide, discount prices. \$3.00 N.E.C.S. INC., Box 22808-R1, Little Rock, AR 72221
TELEASE-MAST assortment \#301 (October "86 article) Printed clrcuit, IC's, transistors, dlodes. 25.00. Shipping $\$ 3.00$. JIM RHODES, INC., P. O. Box 3421, Bristol, TN 37625.
MOVIE-network descramblers $\$ 295$ up. Catalog $\$ 4$ US. SKYWATCH, 238 Davenport Road, Toronto, Ontario, Canada, M5R-1J6

GREAT VALUES • FAST SHIPPING •QUANTITY DISCOUNTS

STATE OF ARTS HQ FET ST. PRE - AMP

DESCRAMBLER build our low cost satelite TV video only descrambler for all major movies and sports. Uses all Radio Shack parts. Order P.C. board and instructions by sending cheque, money order, or Visa for $\$ 35.00$ U.S. funds to: VALLEY MICROWAVE ELECTRONICS, Bear River, Nova Scotia, Canada, BOS-1BO. (902) 467-3577

BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi-ness-without investment. Write: BUSINESSES 92-R, Brighton 11th, Brooklyn, NY 11235
YOUR own radio station! AM, FM, cable. Licensed or unlicensed. BROADCASTING, Box 130-F10 Paradise, CA 95967
PERSONAL computer owners can earn $\$ 1000$ to $\$ 5000$ monthly selling simple services part time Free list of 100 services. Write: A.I.M.J.K., PO. Box 60369, San Diego, CA 92106-8369.
EARN thousands with your own part-time electronics business I do. Free proof, information. INDUSTRY, Box 531, Bronx. NY 10461
CRT equipment rebuilds Sony/color tubes/other CRT SYSTEMS, 633 North Semoran, Orlando, FL 32807. Call (305) 275-9543

FULL service electronics business. Reasonably priced Hub of northern Arizona. CORNERSTONE REALTY, Box 88. Williams, AZ 86046

目 614 ELECTRONIC ASSEMBLY BUSINESS

Start home spare time. Investment knowledge or experience unnecessary BIG DEMAND assem bling electronic devices Sales handled by profes. sionals Unusual business opportunity.

FREE: Complete illustrated literature BARTA. RE-O Box 248

DEALERS wanted. Notch filters for any channel Send for further information or $\$ 15$ for sample unit (specify output channel of converter). DB ELECTRONICS, P.O. Box 8644, Pembroke Pines. FL 33084.

PROJECTION TV ...Make $\$ \$ \$$'s assembling projectors...Easy . Results comparable to $\$ 2.500$ projectors... Total cost less than $\$ 30.00$...Plans, $8^{\prime \prime}$ lens and dealers information $\$ 20.50$...lilustrated information free...MACROCOMA-GAX, Washington Crossing, PA 18977. Creditcard orders 24hrs. (215) 736-2880

COMPUTER/TV/RADIO TROUBLESHOOTING PROBLEMS?

BECOME a super tech instantly with your os cilloscope and The Octopuss analog and digital component troubleshooter \$59.95 complete. HUNTCO1 6161 El Cajon Blvd., Suite B-57. San Diego, CA 92115 (619) 226-5139

PRINTED CIRCUIT BOARD LAYOUTS

GUARANTEED low pricing for single, double sided artwork layouts. (704) 464-1764. PCBAL, RT-3, Box $662-\mathrm{H}$; Conover, NC 28613

DIGITRON GLIGTRONICS PRESENTS...

 GE ${ }^{\text {® }} . . . \mathbf{S K}^{\text {® }}$

TYPE MO		3 MIN	100 MIN
500A/GE527	. Sk3304	7.90	6.95
523/GE528	SK3306	7.75	6.50
526A/Sк3306		7.75	6.50
528/SK3906		8.75	7.75
529/Gf529	SK3307	8.75	7.75
HEW 559		18.95	16.95
NEW 560		17.75	16.25
NEW 561		18.45	12.95

Flybacks

ORDER TYPE

FLY 200
FLY 205
fLY 210
FLY 215
FLY 220
FLY 225
FLY 230
FLY 235
FLY 235

DESCRIPTION
PRICE
SANYO \#4 2751 -60108 SANYO \#4-2751-48600 SANY0 \#4-2751-48500 7.95 SANYO \#F0-192 SANY0 \#F1123 SANYO \#FO-239 IBM \#74730102538 SHARP \# RTRNF2037TAZZ SAMP0 \#8FT046

FOCUS DIIIDEAS
FOIOO
REPLACES SANYO \& SEARS \#ESPA-98-FI • \# Z0064 • ESPA-94

F0200
REPLACES SANYO \& SEARS \#ESPA-91
8.95

OUTPUT TRANSISTORS

TYPE	10	50	100
165	1.99	1.75	1.55
238	1.99	1.75	155
283	2.49	2.25	165
389	2.95	2.75	225
2SD+341P	1.65	1.45	1.35
BUY69A	2.49	2.25	165

MORE SAVINGS

	10	50	100
LA1365	. 85	75	65
2SD1398	1.95	1.85	1.75
2SD313	. 40	. 38	35
2 2S324	. 35	. 28	25
2SD613	48	44	38
2SD401A	85	75	65

¢

ADDITIONAL REPLACEMENT FOR POPULAR ECG ${ }^{\oplus}$ TYPES

DIGITRON ELECTRONIC CORPORATION 110 hilside avenue • spangefild new jersev orogi 201-379-9016 • 201-379-9019 • 1-800-526-4928 • TLX 138441 • FAX 201-467-8065

WANTED

INVENTORS! AIM wants-ideas, inventions, new products, improvements on existing products. We present ideas to manufacturers. Confidentiality guaranteed. Call toll free 1-(800) 225-5800 for information kit.
INVENTIONS, ideas, new products wanted! Indus try presentation/national exposition. Call free 1-(800) 288-IDEA. Canada, 1-(800) 528-6060. $\times 831$.
WANTED excess inventories of I.C.s. disk drives. circuit boards, computers etc. WESTERN TECH, (818) 882-1355. (CAL.)

SPEAKER \& ELECTRONICS CATALOG 1001 BARGAINS IN SPEAKERS toll free 1-800-346-2433 for ordering only. 4904 MCGEE STREET KANSAS CITY, MO. 64408

DO IT YOURSELF TV REPAIR

NEW...REPAIR ANY TV...EASY. Anyone can do it. Write RESEARCH, Rt. 3. Box 601BR. Colville, WA 99114.

EDUCATION \& INSTRUCTION

F.C.C. Commercial General Radiotelephone license. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-176, Box 2223, San Francisco, CA 94126.
HAM licenses supereasy. Cut exam preps 50\%. All classes. Free catalog. SASE. BAHR, 2549-E5 Temple, Palmbay. FL 32905
INVENTOR'S packet: protect ideas, save money without invention brokers. Sample contracts, manufacturers lists and more inside information $\$ 12.95$ check/MO. NON-GENRE ENTERPRISES, PO. Box 1888, Manhattan, KS 66502.

TELEPHONE VOICE SCRAMBLERS

SCRAMBLE your telephone conversations. Fully self-contained voice privacy system that prevents unauthorized interceptions. Highly recommended for Cellular and I.M.T.S. telephones. CallN.A.S. (213) 631-3552.

SCIENTIFIC ATLANTA \& SB-3

SCIENTIFIC Atlanta models 8500-8550, remote included... \$240.00. SB-3's...\$74.00. TRIBl's $\$ 95.00$. SBSA-3's... $\$ 99.00$. Zenith (Z-Tac) descramblers... $\$ 169.00$. N-12 (Vari-sync) $\$ 89.00$ M-35 B (Vari-sync)... $\$ 99.00$. Jerrold-450 and $550-$ Meg converters... \$95.00. Dealer discount on (5) units. Brochure avaiiable. Call...N.A.S., (213) 631-3552.

MASTERCARD AND VISA are now accepted for payment of your advertising Simply complete the form on the first page of the Market Center and we will bill.

AMAZUNG
 SCIENTIFIC \& ELECTRONIC PRODUCTS

PLANS - Burd Yourselit-An Parts Available in Stock - LC7 BURNING CUTING CO LASER RUBA-PORTAB E LASER RAY PSTO

- TCC1-3 SEPARATE TESI A COILL

PLANS TO 1.5 MEV

- IOG1-ION RAY GUN
- GRA1-GRAVITY GENERATOR (AL GUNU AUMCHER
EML - ELECTRO MAGNET COL GUNILAUNCHER

KITS

- MFTIK-FM VOICE TRANSMITTER 3 MI RANGE

WWPM5K -TELEPHONE IRANSMITER 3 MI RANGE

- BTC3K-250.00 VOLT 10-14" SPARK TESLA COIL

LHCZK-SIMULATEO MULTICOLOR LASER.
BLSIK- 100.000 WATT BL ASIER DEFENSE DEVICE
-ITM1K - 100 ,000 VOLT 20' AFFECTIVE
RANGE INTIMIDATOR.
PSP4K-TIME VARIANT SHOCK WAVE PISTOL.

- PIG1K-SPECTACULAR PLASMA

TORNADO GENFRAIOR
MVFIK SEE IN DARKKII
MVFIK SEE IN DARK KII 169.50

ASSEMBLED

PG70H-MULTICOL ORED VARIABIE
MODE PL ASMA GLOBE "7"

- BTC 10-50,000 VOLI-WORLD'S SMALLEST

GUU40-1 MW HENE VISIBLE RED LASER GUN - TAT20 AUTO TELEPHONE RECORDING DEVICE - GPV10-SEF IM IOTAL DARKNESSIR VIFWFR - LIST10-SNOOPER PHONE NFFNITY TRANSMITTER - IPG70-INVISIBLE PAIN FIELD GENERATORMULTR MODE.

CATALOG CONTAINING DESCRIPTIONS OF ABOVE PLUS WITH ALL ABOVE ORDERS.
PLEASE INCLUDE $\$ 3.00$ PH ON ALL KITS AND PRODUCIS PLANS ARE POSTAGE PAID. SEND CHECK. MO. VISA, MC IN S FUNDS
INFORMATION UNLIMITED
P. 0 . BOX 716 DEPT. RE AMHERST, NH 03031

CIRCLE 193 ON FREE INFORMATION CARD

Ellminate the lates! copyguard problems units from $\$ 59^{95}$ to $\$ 169^{95}$
Defuxe Electronics
(714)998-6866

1432 Yaim THy, Orange, Ca 92665

DESCRAMBLER MODULE

COMPLETE cable-TV decoder in a mini-module. Latest technology upgrade for Jerrold SB-3 or Ra-dio-Electronics Feb. 1984 project. Available at verylow cost. For literature, SOUTHTECH DISTRIBUTING. (813) 222-3293.

IBM-PC SOFTWARE

COMPDES-Computer-Aided circuit design, selections from basic electricity to circuit designs. Very educational. \$49.95 (614) 491-0832. ESOFT SOFTWARE, 444 Colton Road. Columbus, OH 43207.

TUBES - 2000 TYPES DISCOUNT PRICES!
Early, hard-to-find, and modern tubes. Also transtormers, capacitors and parts for tube equipment. Send $\$ 2.00$ for 20 page wholesale catalog.
ANTIQUE ELECTRONIC SUPPLY 688 W . First St. © Tempe, AZ 85281-602/894-9503

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service 1 -(800) 338-5656. In Massachusetts or Canada call (413) $568-3753$

CABLE TV TURN-ON'S

TURN-ON, boards \& kits for Jerrold 400; Jerrold 450 (all models-no internal modification); Tocom 5504 \& 5503. Special requests no problem-let us know what make \& model you are interested in. Fully guaranteed. Call or write for information and prices. VIDEO SOLUTIONS, 3938 E. Grant. Suite 236. Tucson, AZ 85712. (602) 323-6072

THIS IS AN EXPANDED TYPE AD. Notice how it stands out on this page. To get your ad set in this type style mark your classified ad order, "Expanded-type ad," and calculate your cost at $\$ 4.30$ per word.

MASTERCARD AND VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.

Copies of articles from this publication are now available from the UMI Article Clearinghouse.
Mal to: University Microfilms International
300 North Zeeb Road Box 91 Ann Arbor. M1 48106

Mra ART

Follow the I. red blocks to a wide selection of Products!

Super Wash

- Poweriul spray cleans intricate electronic assembly without harming plastics a Dries instantly \& Spray literally blasts dirt and grease away $\mathbf{~} 240 z$

Tuner Cleaner - Cleans, lubricates, protects : Cleans and restores dirty and corroded contacts - Dqesn't harm pląstics - 1602.

For more Chemicals see pages 128-130 of Catalog \#15

Diskette File Box . Stores up to $70-514_{4}{ }^{\prime \prime}$ diskettes Case made of anti-static ABS plastic with smoked acrylic cover a Six adjustable index dividers

Deluxe Joystick for Atari and Commodore - For use with Atari, Commodore and other VCS compatible systems a Two firing butions $\mathbf{~ 5 . 5}$ ' cord with 9 pin plug

Catalog \#15 has other Computer Equipment and Accessories on pages 119-127

Be sure to call for your FREE catalog! 9,000

Tenma Deluxe Anti-Static

 Desoldering Tool- Rugged metal construction a Antistatic tip a Nozzle cleaner a Lightweight and compact . Disassembles easily for cleaning : $^{73 / 4} 4^{\prime \prime}$ long $x^{3 / 4}$ " diameter

Addltional Soldering Equipment can be found on pages 137 and 138 of Catalog \#15

Tenma 15MHz Dual Trace Portable Oscilloscope -Dual trace model capable of displaying signals up to 15 MHz , for up to two hours on a single charge of its internal battery - Power can be supplied from either a 12VDC or $120 / 240 \mathrm{~V} 50 / 60 \mathrm{~Hz} \mathrm{AC}$ source

Tenma LCR Meter

 - LCR Meter provides a

For more specs and Test Equipment see pages 146-154 of Catalog \#15 static sensitive devices - Overheat protection with closed loop temperature conirol - Replaceable iron clad tip - Improved circuit design for
greater temperature stability - Improved circuit design for

Tenma Soldering Station Adjustable temperature range
 Tenma Soldering Station - Adjustable temperature range of $150^{\circ}-420^{\circ} \mathrm{C}\left(300^{\circ}-790^{\circ} \mathrm{F}\right)$ - Grounded tip for soldering

$\sqrt{\text { AlITHEGO}}$

NECV20 \& V30CHIPS

Replace the 8086 or 8088 in Your IBM-PC and o. Increase its Speed by up to 40% !		
UPD70108-5	(5 MHz) V20 Chip.	\$ 9.95
UPD70108-8	(8MHz) V20 Chip.	\$11.
UPD70108-10	(10MHz) V20 Chip	\$34.95
UPD70116-8	$(8 \mathrm{MHz}) \mathrm{V} 30 \mathrm{Chip}$	\$14.95
UPD70116-10	(10MHz) v30 Ch	

7400

7400					
Part No.	1.9	$10+$	Part No.	1.9	$10+$
7400	29	19	7485	65	55
7402	29	19	7486	45	35
7404	35	25	7489	2.05	1.95
7405	39	29	7490	49	. 35
7406.	39	. 29	7493	45	. 35
7407.	39	29	74121.	45	. 35
7408	35	25	74123.	59	49
7410. 7414	35 49	. 35	${ }_{7}^{74125}$. 75	45 65
7416	45	35	74143	405	3.95
7417.	45	35	74150	1.35	1.25
7420	35	25	74154	135	1.25
7430.	35	25	74158.	159	1.49
7432	39	29	74173.	85	75
7438	39	29	74174.	.65	55
7442.	75	. 69	74175. 74176	. 65	${ }_{89}$
7446.	. 89	79	74181.	. 195	1.85
7447.	89	79	74189	205	1.95
7448	2.05	1.95	74193.	79	69
7472	75	65	74198	1.85	1.75
7473.	45	. 35	74221.	. 99	89
7474.	45	35	74273.	2.05	
$\begin{aligned} & 7475 . \\ & 7976 \end{aligned}$	49	$\begin{aligned} & .39 \\ & \hline \end{aligned}$	74365. 74367	69	59 59

$74 L 5$					
74LS00	29	19	74LS165.	9	65
74LS02.	29	19	74LS166	99	89 49
			74LS173	59	99
74LS05	35	25	74-S175.	99	39
74 LS07.	09	99	74LS189	. 59	49
74LS08	29	19	74 LS 19	59	49
74LS10.	29	19	74LS193.	79	69
741514	49	39	74LS22	69	59
74LS27.	35	25	74LS240	79	69
741530	29	19	74LS243.	79	69
74LS32	35	25	74LS244.	79	69
74LS42	49	39	74LS245	89	79
74LS47.	99	89	74LS259.	99	89
74LS73	39	29	74LS273	89	79
741.574	35	25	74LS279.	49	39
74LS75.	. 39	29	74LS322.	4.05	3.95
74LS76.	55	45	74LS365	49	39
74LS85.	59	49	74tS366.	49	39
74LS86	35	. 25	74LS367.	49	39
74LS90.	49	39	7415368	49	39
74LS93.	49	. 39	74LS373.	79	69
74LS123	59	49	7415374.	79	69
74LS125.	49	39	74LS393.	89	9
74 LS138	49	39	7415590	6.05	5.95
74 LSI39.	49	39	74LS624.	2.05	1.95
$74 \mathrm{LS154}$	1.09	99	7415629	2.29	2.19
74 LS 157.	45	35	74LS640	1.09	99
74 LS 158	45	35	74LS645.	1.09	99
74LSt63.	59	49	74LS670.		. 99
LS 164	59	49	74LS688.	205	195

74S/PROMS*

74500.	29	74S188'	129
74504.	35	745189	1.69
74508.	35	$74 \mathrm{~S}^{196}$	2.49
74510	29	74 S 240	1.49
74532		74 S 244	1.49
$74 \mathrm{S74}$.	45	745253	79
74 S85		74 S 287 :	
74586.	35	745288.	1.49
745124	295	745373	1.49
745174	79	745374	49
745175	79	745472	295
	72	4F	
74 FOO			
$74 F 04$	39	${ }^{74 F 157}$	${ }_{95}$
74 FOB		74F193	3.95
74 F 10.	39	74F240.	1.39
74 F32.	39	74F244	1.39
$74 \mathrm{F74}$	49	74F253	99
74.86	59	74F373	1.39
74 F 138	89	74F374.	1.39
	-	CMOS	
CD4001.		CD4076.	
CD4008.		CD408 ${ }^{1}$	25
CD4011.		CD4082.	25
CD4013	29	CD4093	35
CD4016	29	CD4094.	89
CD4017.		CD40103	249
CD4018	59	CD40107.	-69.39
CD4020	59	C040109.	+4979
CD4024.	49	CD4510.	69
C04027.	35	CD4511.	69
CD4030		CD4520	75
CD4040	65	CD4522.	79
CD4049	29	CD4538	79
CO4050.	29	CD454	. 69
CD4051.		C04543	79
CD4052	59	CD4553	4.95
CD4053		CD4555	
CD4063.	1.95	CD4559	795
$\mathrm{CD4066}$		CD4566	249
CD4067.	239	CD4583	89
CD4069	25	C04584	39
CD4070.	25	CD4585	89
C04071.	25	MC14411P MC 14490 P	8.95

MICROPROCESSOR SALEI

MC68000L8
MC68000L10
MC68000L12
MC68008L8
MC68010L10
MC68020RC12B
MC68701
MC68705U3L
MC68881RC12A

SATELLITE TV DESCRAMELER CHIP

INTERSIL Also Available!			
74HCHI-SPEEDCMOS			
Part No.	Price	Part No.	
74 HCOO	25	$74 \mathrm{HC} \cdot 75$	69
$74 \mathrm{HCO2}$ 74 HCO	25	$74 \mathrm{HC221}$ 74 CL 240	
74 HCOB	29	$74 \mathrm{HC2} 24$	79
$74 \mathrm{HC10}$	29	$74 \mathrm{HC245}$	99
74HC14.	49	74HC253	
$74 \mathrm{HC3O}$	29	74HC259	
74HC32 74 HC 74.	29 39	${ }^{744 \mathrm{HC273}}$	
74 HC 75	39	$74 \mathrm{HC374}$	
$7414 \mathrm{C76}$	45	74HC595	
$74 \mathrm{HC85} 5$	79	74HC688.	
$74 \mathrm{HC86}$.		$74 \mathrm{HC943}$	
$74 \mathrm{HC123}$	89	$74 \mathrm{HC4040}$	
$74 \mathrm{HC125}$	49	74HC4049.	
74HC132	49	${ }^{74 \mathrm{HCC4050}}$	
${ }_{74 \mathrm{HC}} 139$	49	${ }_{74 \mathrm{HC} 4511}$	
$74 \mathrm{HC154}$	119	74HC4514.	
$74 \mathrm{HC163}$	65	$74 \mathrm{HC4538}$.	

74HCT - CMOS TTL

74 HCTOO	29	74HCT139.
74 HCTO 2.	29	74HCT157
${ }^{7} \mathbf{7 4 H C T O 4}$	29	${ }_{\text {74HCT174 }}$
$74 \mathrm{HCTO8}$ 74 HCT 10	. 29	${ }_{74 \mathrm{HCT} 240}^{74 \mathrm{Cl}}$
$74 \mathrm{CCT32}$	29	74HCT244.
$75 \mathrm{HCT74}$.	. 49	74HCT245
${ }_{7}^{74 H C T 86}$	49	${ }_{7}^{74 \mathrm{HCH}} 373$

74000	29	74 C 174.
$74 \mathrm{CO2}$	29	74 C 175
74.04.	29	74 C 221
74 Cog	35	74C240
74 C 14.	49	74 C 373
$74 C 32$	35	$74 \mathrm{C374}$
74 C 74.	59	$74 \mathrm{C912}$
$74 \mathrm{CB5}$.	1.35	$74 C 915$
$74 \mathrm{Crs6}$	35	$74 \mathrm{C920}$
$74 \mathrm{CB9}$.	5.19	740921
$74 \mathrm{C9O}$.	99	$74 \mathrm{C922}$
74 C 173.	105	$74 \mathrm{C925}$.

LINEAP			
DSOO26CN	95	LM1458N	39
74CN.	89	LM1488N	
O84CN.	8.99	DS14C88N(CMOS)	49
LM307		DS14C89N (CMOS)	19
LM309K.	1.25	LM1496N.	35
131 N	45	MC1648P	4.95
1317T.		LM1871N	
LM318N	99	1872	95
(19N.	. 99	LM1896N-1.	59
		(1)	
		20	
339 N		2243	
-347N)	
N		,	碞
LM350T.	2.95	DS26LS 32 CN	1.19
LF351N.	.39	DS26LS33CN	. 95
		LM2901N.	49
LF355N	79	LM2907N	2.49
LF350N		MC3917N(8)	
LM358N	4.4	MC34	295
LM360N	2.19	MC345	
LM361N		M	
380N-8.	99	MC3471P.	4.95
退		Mc3488	
LM387N	99	M	
LM393N	39	Mc34801	
M3993	. 95	LM39000	9
LF411CN.	79	LM3909	9
TE5400 (C54	269	LM3914N	
NE555V.		LM3916N	95
$\times \mathrm{C}$ - 5555		NE5532.	89
LM556N	49	7805	29
NE558N.		1340k-12)	129
LM565N	69	880	29
NE592N	69	7805T (1)	49
LMP41CN	29	7815T (LM340T-15)	49
LM747CN	. 59	7905k (LM320k-5)	
MC1350.	1.49	(M320	
C1372P	249	75472 .	9
MC1377P	. 3.19	75477	99
C1398P	8.95	MC	
M1414N		MC145406	2.95

IC SOCKETS

Worldwide • Since 1974 atatrcom men an

 .
 ELECTRONICS

anneco
دELEctionics General Purpose NEW! Prototype PC Boards

Wire Wrap Component Testing
Point-toPoint Wiring 31/62 Connection

JE417 (Pictured)
JE411 (61/2". No Pads, Gen, Purp.). \$12.95 JE415 ($6^{1 / 2}$ ", No Pads, PC/XT). \$14.95 JE417 ($6^{1 / 2} z^{n}$, Plated w/Pads, PC/XT).

INTRODUCING JAMECO'S NEW COMPUTER KITS!!

Jameco's IBM ${ }^{\text {nd }}$ AT Compatible Kit! Mini-286 6/8/10/12 MHz Kit!
 Part No. Description Price JE1015 XT/AT Style Keyboard. . . . \$ 59.95 41256-120 512K RAM (18 Chips) . . \$ 71.10 JE1012 Baby AT Flip-Top Case. . . . \$ 79.95 JE1032 200W Power Supply. \$ 99.95 JE1022 51/4" High Density Disk Drive \$119.95 JE1045 Hard Disk/Foppy Controller \$199.95 E1003 Baby AT Motherboard
A. Regular List $\$ 1,080.80$ SAVE \$105.85!
JE1008 IBM ${ }^{\text {w }}$ AT Compatible Kit.
$\$ 974.95$ JE1059 EGA Monitor \& Card SAVE \$30.00 . . \$569.95

JE1004 (IBM ${ }^{m}$ PC/XT Compatible Kit).
$\$ 499.95$
May have to troubleshoot or just use for spare parts. CV20 includes: (1) 6560 , (2) 6522 , (1) 6502 , (2) $6166 \mathrm{P}-4$, and much more!
CV64 includes: (1) 6567, (1) 6581, (1) 6510, (1) $82-$ S100PLA, (1) 901227-03, (2) 6526, and much more! 08903-3 (sAms vic-20 Schematics) . . . \$19.95 CV64 (C-64 Motherboard). \$49.95
08906-8 (SAMS C-64 Schematics) . $\$ 19.95$

Additional Commodore Accessories *CM-1 (300 в Modem Vic-20, C -64) . $\$ 19.95$ *JE232CM (RS232 inter. vic-20, C-64) . \$39.95 CPS-10 (C-64 Power Supply). $\$ 39.95$ CPS-128 (C-128 power Supply). . . . \$59.95

EUCWIKIEIPOA|PI

TANDY 1000
Expansion Memory Half Card
Expand the memory of your
Tandy $1000(128 \mathrm{~K}$ Version) to asmych as 640 K . Also includudes
TAN-EM512K Includes 512K RAM. $\$ 119.95$ TAN-C Plug-in Clock option chip (only) $\$ 39.95$
SALE! 20Meg Hard Disk SALE!
T20MB
20MB Hard Disk Drive Board for Tandy 1000 . . \$579.95 \$494 20 MB Hard Disk Drive Board for Tandy 1000SX \$509.95 \$499.95
 TANDY 1000 Multifunction Multifunction
Board with Board with
Clock Calendar Expand the memory on your Tandy 1000 (128K Version) to as
much as 640 K Complete with an RS232 pon, clock/calendar. Much as 640 . Complete with an RS232 pont. clock/calenar
RAM Disk, Printer Spooler and on-board DM A controler chip
MTAN-512K includes 512 K RAM . . $\$ 199.95$

ameco

Breadboard Sockes

JE23	JE24		JE27	
$\begin{aligned} & \text { Part } \\ & \text { No. } \end{aligned}$	$\operatorname{Lim}_{L^{\prime \prime} \times W^{\prime}}$	Contact Points	$\begin{aligned} & \text { Binding } \\ & \text { Posts } \end{aligned}$	Prin
JE20	$61 / 2 \times$	00		\$ 2.
JE21	$31 / 4 \times 2{ }^{\frac{1}{6}}$	400	0	\$ 4.95
JE22	$61 / 2 \times 13 / 8$	630	0	\$ 6.49
JE23	$61 / 2 \times 21 / 8$	830	0	\$ 7.49
JE24	$61 / 2 \times 31 / 8$	1.360	2	\$13.95
JE25	$61 / 2 \times 41 / 4$	1,660	3	\$24.95
JE26	6\% \times ¢ $3 / 4$	2,390	4	\$29.95
JE27	71/4 $\times 71 / 2$	3,220	4	\$39.95
$\sqrt{\text { Qimeco }}$Extended 80-Column Card for Apple $/ / \mathrm{e}$				
80 Col./64K RAM - Doubles amount of data your Apple he can display as well as its memory capacity. Ideal for word processing - Complete with instructions JE864 \$59.95				

ADD-12 (Diak drive II. It, lie) $\$ 99.95$
Additional Apple Compatible Products Available

JE1020 (360к Drive, PC/XT/AT) . . . \$ 99.95 JE1022 (1.2мв. AT Compatible) . . . \$119.95

DATA BOOKS

30003	National Lineer Data Book (82). \$14.95
30005	Logic Data Book - Vol. 11 (84
30009	intersil Data Book (80)
30032	National Linear Supplemen
210830	Intel Memory Handbook (87)
230843	Intel Microsysterm Hodbk. Set (87)
MUFFIN/SPRITE-STYLEFANS	
MUF60. $\$ 9.95$ Torin Industres ($4.68^{\prime \prime}$ sa., 60 cm)	
	SU2A1. $\$ 8.95$

\$20 Minimum Order - U.S. Funds Only
Shipping: Add 5\% plus \$1.50 Insurance

California Residents: Add 6\%, 61/2\% or 7\% Sales Tax
IBM is a registered trademark of Intemational Business Machines

Send \$1.00 Postage for a FREE Seasonal Flyer FAX 415-592-2503

Send \$1.00 Postage for a FREE 1988 CATALOG

Telex: 176043
© 1987 Jameco Electronics

Data Sheets - 50c each Prices Subject to Change

20 WEGHATD DISK Dilve OW A GATD sfiel

$\star \star \star \star$ HIGH-TECH $\star \star \star \star$
NICKEL EXPRESS $\$ 6995$ PC/KT SPEED UP KIT

- INCREASE THE SPEED OF YOUR PC BY 67% OR MORE! SIMPLE NO-SLOT INSTALLATION SOFTWARE OR HARDWARE SPEED SELECTION 8 MHz VZO PROCESSOR \& SOFTWARE INCLUDED SELECT FOR 3 TURBO FREQUENCIES EXTERNAL RESET SWITCH
ertain
$\star \star \star \star$ SPOTLIGHT $\star \star \star \star \star$ U.S. AND OADADA OinERTOLL Fite 800-538-5000

EPROMS

2708

$2048 \times 8 \quad(350 \mathrm{~ms})(5 \mathrm{VV})$

4096×8	$\begin{array}{ll}445 \mathrm{nssl} / 5 \mathrm{~V} \\ \text { a096x8 }\end{array}$

$4096 \times 8 \quad$ (45 nnss) 15 VV)
$4096 \times 8 \quad(250 \mathrm{~ns})(5 \mathrm{VV})(21 \mathrm{~V}$ PGM)

$8192 \times 8 \quad(450 \mathrm{~ns} / 15 \mathrm{~V}$)

$\begin{array}{ll}8192 \times 8 \\ 8192 \times 8 & (200 n s)(5 V) \\ (350 \mathrm{n} \times 1(5 \mathrm{~V})(24 \mathrm{PIN})\end{array}$
$16384 \times 8 \quad(250 \mathrm{~ns})(5 \mathrm{VV})$
32768×8 (250 ns)/(5V)(CMos)
$\begin{array}{ll}32768 \times 8 & (250 \mathrm{~ns})(5 \mathrm{~V}) \\ 65536 \times 8 & (250 \mathrm{~ns})(5 \mathrm{~V})\end{array}$
$\begin{array}{ll}6553688 & (250 \mathrm{~ns}) / 5 \mathrm{~V}) \\ 6553 \times 8 & (250 \mathrm{~ns}) /(\mathrm{VV} /(\mathrm{CMOS})\end{array}$

Q CORPDRRANICS EPROM ERASERS

74LS00

BIT RATE	
GENERATORS	
MC 14411	9.95
B7941	9.95
$4702{ }^{2}$	
Com 8116	9.95

UARTS
AY5-1013
AY3.1015
AY3.1015
TR1602
RR1602
2651
IM6402
IM6402
IM6403
INSR250
NS 16450

NEW STORE HOURS! M-F: 9-7, SAT: 9-5 \& SUN: 12-4

Visit our retail store located at 1256 S . Bascom Ave. in San Jose, (408) 947-8881

U.S. \& GINTDA ORDER TOLL FRIE 800-530-5000

MONITOR STANDS MODEL MS-100 MODEL MS-200
$\$ 39.95$
TILTS AND SWIVELS
BUILT-IN POWER STATION
" BUILT-IN POWER STATION
120 VOLT AC OUTLETS

- BUILT-IN SURGE SUPRESSOR
UL APPROVED

DISK DRIVES
FOR APPLE COMPUTERS

AP-150 $\$ 99.95$
1/2 HT. DIRECT DRIVE 100% APPLE COMPATIBLE
SIX MONTH WARAANTY

AP-135

\$129.95

FULL HT SHUGART MECHANISM * DIRECT REPLACEMENT FOR APPLE

SIX MONTH WARRANTY

AD-3C
$\$ 139.95$

100% APPLE IIC COMPATIBLE
READY TO PLUG IN W/SHIELDED CABLE \& MOL
CONNECTOR
FAST RELIABLE SLIMLINE DIRECT
SIX MONTH WARRANTY
DISK DRIYE ACCESSORIES
FDD CONTROLLER CARD $\$ 49.95$
IIC ADAPTOR CABLE $\quad 519.95$
ADAPTS STANDARO APPLE DRIV
FOR USE WITH APPLE IIC

KB-1000

$\$ 79.95$
CASE WITH KEYBOARD
FOR APPLE TYPE MOTHERBOARD
USER DEFINED FUNCTION KEYS
NUMERIC KEYPAD W/ CURSOR CONTROL
caps lock
AUTO-REPEAT

JOYSTICK BC-10 \$18.95

* SET X-Y AXIS FOR AUTO CENTER OR FREE MOVEMENT
SOFTWARE
AMTRACTIVE, SOLID, PLASTIC CASE - INCLUDES ADAPTOR CABLE FOR IBM. APPLE II, IJo

CASPER EGAM MOMITOR EGA \& CGA COMPATIBLE
SCANNING FREQUENCIES RES: $640 \times 200 \quad 35 \mathrm{KHz}$ RES: $640 \times 200,350$
31 mm DOT PITCH, 25 MHz 16 COLORS OUTRIX SCREEN
$\$ 399.95$

* CABLE FOR IBM PC INCLUDED

CASPER RGB MONITOR
COLOR GAEEN AMBER SWITCH OV REAR
DIGITALRGB-IBM COMPATIBLE - DIGITAL RGB-IBM COMPATIBLE 14 NON-GLARE SCREEN
RESOLUT TUNN: $640 \mathrm{H} \times 240 \mathrm{~V}$

FORTRONICS MONOCHROME IBM COMPATIBIE TIL INPUT 12 NON GLLARE SCREEN
VERY WHGH RESOLUTION: VERY HIGH RESOLUTION
1100 LINES SEENTER) 1100 LINES (CENTER) 25 MHz BANDWIDTH
CABLE FOR IBM PC INCLUDED amber or green avallable

APPLE COMPATIBLE INTERFACE CARDS

EPROM PROGRAMMER
DUPLICATE OR BURN A (2716 TO 27128) MENU-DRIVEN SOFTWARE HIGH SPEED WRITE ALGO
RITHM
RP-525 \$5995

16K RAMCARO - FULL 2 YEAR WAFRANTY TO A FULL 64 K OF MEMORY CAAN BE USED IN MLACE OF
THE APPLE LANGIAGE CARD RAM-CARD S3995

IC TEST CARD
OUICKLY TESTS MANY
COMMON ICS TEST $4000 \& 74$ HC SERIES CMOS, $7400,74 \mathrm{LS}, 74 \mathrm{~L}$.
$74 \mathrm{H} \& 74 \mathrm{~S}$
IC-TESTER $\$ 12995$
molded interface cables
FOOT, 100% SHIELDED, MEE TS FCC
 IBM PARALLEL PRINTER CABLE
CENTRONICS (MALETOFEMALE) CENTRONICS (MALE TO FEAAALE
CENTRONICS (MAIE TO MALE) MODEM CABLE (FOR IBM)
$\begin{array}{r}9.95 \\ 15.95 \\ 14.95 \\ \hline 1.95\end{array}$
$\begin{array}{r}14.95 \\ 7.95 \\ \hline\end{array}$

9.95
9.95

7.95
4.95 RS232 SERIAL (MALE TO MALEE) APPLE II JOY STICK EXTENOER

8WITCH BOXES

ALL LINES SWITCHED GCLD PLATED
CONNECTORS QUALITY SWITCHES
2 WAY \$33.95

- CONNECTS 2 PRINTERS TO
COMPUTER OR VICE VERSA

AB-P (CENTRONICS PARALLEL)
AE-8 (RS232 SERIAL)

3 WAY \$99.95

CONNECTS 3 PRINT:RS TO
COMPUTER OR VICE VERSA
8WITCH-3P (CENTRONICS PARALLEL) 8WITCH-38 (RS232 SERIAL)

C. ITOH RITEMAN II PRINTER

160 CPS DRAFT, 32 CPS NLO 9×9 DOT MATRIX
SUPPORTS EPSON/TBM GRAPHICS FRICTION AND PIN FEEDS

VARIABLE LINE SPACING AND PITCH

\$219.95

Ibm primter cable
REPLICEMEMT RIBEON CARTRIOBE
$\$ 8.85$
$\$ 7.95$

NASHUA DISKETTES

NASHUA DISKETTES WERE JUDGED TO HAVE THE HIGHEST POLISH AND RECORDED
AMPUITUDE OF ANY DISKETTES TESTED (COMPARING FLOPPY DISKS. BYTE 9/84)

N-MD2D DS/DD $5 / /^{\prime \prime}$ SOFT $\$ 9.90$ N-MD2F DS/QUAD $5 / /{ }^{1 /}$ SOFT $\$ 19.95$ $\begin{array}{lrl}\text { N-MD2H } & \text { DS/HD } 51 /{ }^{\prime \prime} \text { FORAT } & \$ 24.95 \\ \text { N.FD1 } & \text { SS/DD } 8^{\prime \prime} \text { SOFT } & \$ 27.95\end{array}$ $\begin{array}{lll}\text { N.FD1 } & \text { SS/DD 8" SOFT } & \mathbf{\$ 2 7 . 9 5} \\ \text { N.FD2D } & \text { DS/DD 8" SOFT } & \mathbf{\$ 3 4 . 9 5}\end{array}$

BULK DISKETTE SALE

51/4" SOFT SECTOR, DS/DD SLEEVES \& HUB RINGS $\$ 990$ 69Сеа 59С BOK DF 10 BULK GTY 50 BULKGTY 250

DISKETTE FILES

51/4" D/8KFILE $31 / 2^{\prime \prime}$ DISKFILE

HOLDS 70
HOLDS 40 $\$ 8.95$

20 MEGabyte

 hard disk candSAVES SPACE AND REDUJCES POWER CONSUMPTION
ideal for pCs with fuli height
FLOPPIES
CARD IN ADJACENT SLOT

ONLY 3389

dSP Seagate

51/4" HARD DISK DRIVES
 $\begin{array}{lll}\text { ST } 251 & \text { HALF HT 30MB } 65 \mathrm{~ms} \text { [RLL) } & \$ 299 \\ \text { ST } 251 \text { HALFHT } 40 \mathrm{MB} & 40 \mathrm{~ms} & \$ 599\end{array}$ ST-277 HALFHT GOMB 40 ms (RLL) CALL
ST-4038 FULLHT 30 MB 40 ms \$559 $\begin{array}{lrr}\text { ST-4096 FULL HT BOMB } 28 \mathrm{~ms} & \mathrm{~S} & \mathrm{~S} 1195 \\ \text { ST }\end{array}$
$1 / 2$ HEIGHT FLOPPY DISK DRIVES 51/4". TEAC FD-55B OS DD $\$ 109.95$ 5 $1 /{ }^{\prime \prime}$ TEAC FD-55F OS QUAD 5124.95
$51 /{ }^{\prime \prime}$ TEAC FD. 55 GFU DS 51/2" TEAC FD-55GFV DS HD 5154.95
$51 / 0^{\prime \prime}$ MITSUBISHIDS HD 5129.95 $\begin{array}{ll}51 / 2^{\prime \prime} \text { MITSUBISHJ DS HD } & \$ 129.95 \\ 31 / 2^{\prime \prime} \text { TOSHIBA KIT DS DD } & \mathbf{\$ 1 4 9 . 9 5}\end{array}$ KIT INCLUDES MOUNTING HARD WARE TO

DISK DRIVE ACCESSORIES

TEAC SPECIFICATION MANUAL S500 TEAC MAINTENANCE MANTJAL I HI MNTG HARDWARE FOR IBM
MOUNTING RAILS FOR IBM AT " Y "POWER CABLE FOR 5 /1/" FDNS 5 $1 / 4^{\prime \prime}$ FDD POWER CONNECTORS

OISK DRIVE EMCLOSURES

 WITH POWER SUPPLIESCAB-28V5 DUAL SLIMLINE 51/4" $\$ 4895$ | CAB-1FH5 FULI HT 51/4" | $869^{\prime \prime}$ |
| :--- | :--- |
| CAB-2SVB DUAL SLIMIINE 8" | |
| $\$ 209^{\circ}$ | | $\begin{array}{lll}\text { CAB-2SV日 DUAL SLIMIINE 8" } & \$ 20895 \\ \text { CAB-2FH日 DUAL FULL HT } 8^{\prime \prime} & \$ 21985\end{array}$

buILD STEVE CIARCIA'S INTELLIGENT EPROM PROGRAMMER

AS SEEN IN BYTE, OCT 86
STAND. ALONE OR RS- 232 SERIAL OPERATION
MENU SELECTABLE EPROM TYPES
NO CONFIGURATION NO CONFIGURATION JUMPERS
FROM 2716 TO 27512
READ COPY OR VERIFY EPROM
READ, COPY OR VERIFY EPROM UPIOAD DOWNLOAD INTEL HEX FILES PROGRAMMER DRIVER USER
MODIFIABLE
Kit includes PCB
\& all components
except case \&
power supply

20 MEG HATD DSK DAIVE OHA CHED S36SI
 \section*{EASYDATA MODEMS}

NEW! EVERYTHING-IN-ONE CARD

MCT-MGMIO \$119.95

HERCULES COMPATIBLE MONO. CHROME GRAPHICS, 720×384 PIXELS
1 STANDARD SERIAL PORT INSTALLED. OPTIONAL 2RU PORT AVAILABLE 1 PARALLEL PORT AND REAL TIME
CLOCK/CALENDAR INCLUDED SUPPORTS BOTH DS/DD \& DS/OD

OUALITY IBM COMPATIBLE MOTHERBOARDS

TURBO 4.77 / 8 MHz \$129.95
JDR PART \#: MCT-TURBO
4.77 OR 8 MHZ OPERATION WITH 8088-2 8 OPTIONAL $8087-2$ CO-PROCESSOR OYNAMICALLY ADJUSTS SPEED DURING DISKETE OPERATION FOR MAXIMUM THROUGHPUT AND RELABMIY - CHDICE OF NORMAL TURBO MDDE DR STANDARD MOTHERBOARD $\$ 109.85$ DR PART: MCT-XTMB

802866 / 8 MHz $\$ 499.00$
JDR PART \#: MCT-ATMB 8 SLOT I2 EIGHT BIT, 6 SIXTEEN BIT) AT MARDERBOARD
HAROWARE SELECTION DF GOR 8 MHz - 1 WAIT STATE

RESET SWITCH, FRDNT PANEL LED SOCKETSFDR 1 MB OF RAM AND BOZBED BOARD on board battery backed clock OPERATES WITH PC-DOS OR MS-DD

31⁄2" FDD KIT BY TOSHIBA

JDR PART \#: FDD-3.5 KIT

 720K FORMAT, DOS 3.2 CDMPATIBLE NEWIBM MACHINES NeWIBE MACHINES FACEPLATES FOR BOTH AT $\&$ I XT
\$149.95

IBM XT STYLE COMPUTER CASE

A HINGED LID. FITS THE POPULAA PC/X COMPATIBLE MOTHERBOARDS

SWITCH CUT-OUT ON SIDE FOR PC $/ X$ CUT-OUT FOR 8 EXPANSION SLOTS ALL HARDWARE INCLUDED

KT STYLE SLIDE TYPE CASE $\$ 39.85$ AT STYLE SLIDE TYPE CASE $\$ 89.95$

BUME YOUR OWM 258K XI COMPATIBLE SVETEM
XT MOTMERBOMAD \$10ges PRO-BIOS (a s20 VALUE) FREE 258K BIM 8266^{35} 1301W POWER SUPFLY s69:3 FLIP-TOP CISE HOT-5150 KEYBOMDD 88985 3s0k DaITE 55895 8698 FDD GONTROLLER s34: mOMOBMPHICS CIAD 85895
 TOTAL: 850615

IBM COMPATIBLE KEYBOARDS

MCT-5060

$\$ 59.95$
IBMAT STYLE SOFTWARE AUTOSENSE FOR XT OR AT COMPATIBLES LED INDICATORS FOR SCRORN KEYS NUMBER LOCK
MCT-5339 \$89.95

All models feature auto-dial/answer/redial on busy, Hayes compatible, power up self test, touchtone or pulse dialing, built-in speaker, PC Talk III Communications software, Bell Systems 103 \& 212A full or half duplex and more.

INTERNAL

EASYDATA-12H $\$ 99.95$
EASYDATA-12B \$119.95
EASYDATA-24B \$199.95

00 BAUD FULI CARD

EXTERNAL

NO SOFTWARE INCLUDED EASYDATA-12D \$119.95

EASYDATA-24D \$219.95

MCT DISPLAY CARDS

MCT-EGA

$\$ 179.95$
100\% IBM COMPATIBLE, PASSES IBM EGA DIAGNOSTICS
CDMPATIBLE WITH IBM EGA. COLDR GRAPHICS AND MONOCHROME ADAPTDRS
TRIPLE SCANNING FREQUENCY FOR DISPLAY DN EGA. STANDARD RGE DR HIGH RES OLUTION MONDCHRDDE MDNITDR
FULL $256 K$ OF VIDEO RAM ALLOWS 640×350 FULL 256K OF VIDEO RAM A
PIXELS IN 16 OF 64 COLORS
 LIGHT PEN INTERFACE

MCT-CG

$\$ 49.95$
COMPATIBLE WITH IBM COLOR GRAPHICS STANDARD
SHDRT SLOT CARD USES VLSICHIPS TO INSURERELIABHIN
SUPPORTS RGB. COMPOSITE MONOCHROME 8 COLOR AND AN RF MODULATOR OUTPUT 320×200 COLOR GRAPHICS MODE

IG $\times 200$ MONOGRAPH

MCT-MGP

$\$ 59.95$
COMPATIBLE WITH IBM MONOCHROME AND HERCULES GRAPHICS STANDARDS SHORT SLOT CARD USES VLSI CHIPS TO INSURE RELIABILITY
PARALLELPRINTER PORT, CONFIGURABLEAS
720×348 GRAPHICS MODE
LOTUS COMPATIBLE
CAN RUN WITH COLOR GRAPHICS CARD IN
THE SAME SYSTEM

MCT DEVELOPMENT TOOLS

MCT-PAL
 PAL PROGRAMMER

\$269.95

PROGRAMS
NSC \& MMI
ONE ARRAY LOGIC CHIP CAN REPLACE 4-5 TTL ICS
EASYTO USE MENU-DRIVEN SOFTWARE ALLOWS PROGRAMMING, VERIFICATION READING, MAP BUILDING \& BURNING THE SECURITY FUSE
READ AND SAVE BURN PROFILES IN

CUPL STARTER KIT S4995
MCT-MP microprocessor programmer \$199.95 EASY TO USE MENU.DRIVEN SOFTWARE AND VERIFY OPERATIONS
PORT ADDRESS SELECTION IS USER CONFIGURABLE
SAVE AND RESTORE PROGRAM IMAGES ON DISK
INCLUDES SOFTWARE FOR STANDARD

MCT-EPROM EPRom PRogrammers \$129.95
PROGRAMS $27 x \times$ AND $27 x x x$ SERIES EPROMS UP TO 27512
SUPPORTS VARIOUS MANUFACTURERS FORMATS WITH 12.5, 21 AND 25 VOLT PROGRAMMIMG
MENU-DRIVEN SOFTWARE ALLOWS
EASY MANIPULATION OF DATA FILES
SPLVERAL EPROMS OF DIFFERENT SIZES READ. WRITE, COPY, ERASE CHECK AND VERIFY WITH EASY ONE KEY SELECTION INCLUDES SOFTWARE FOR STANDARD
4 GAMG PROGRAMMER 518985
10 gang PRogrammer s29ges

 MULIIFUNCTION CARDSfrom modular ciacuit technology

MCT-MF

$\$ 79.95$
ALL THE FEATURES OF AST'S SIX PACK PLUS AT HALF THE PRICE! * O. 348K DYNAMIC RAM USING 4164 s PORT. GAME CONTROLLER PORT AND CLOCK/CALENDAR

- SOFTWARE FOR A RAMDISK, PRINT SPOOLER AND CLOCK/CALENDAR

MCT-ATMF

ADDS UP TO 3 MB OF 1 BIT RAM TO THE AT

* USER EXPANDABLE TO 1.5 MB OF ON-BOARD MEMORY (NO MEMORY INSTALLED)
- FLEXIBLE ADDRESS CONFIGURATION
* INCLUDES SERIIAL PORT AND PARALLEL PORT
- OPTIONAL PIGGYBACK BOARD PERMITS - OPTIONAL PIGGYBACK BOARD PERMITS GTMF-SERI贵 2nd SERIAL PORT $\$ 24$ NCT-ATMF-MC \$2985
PIGGYBACK BOARD (ZERO K INSTALLED)

MCT-MIO
 $\$ 79.95$
 A PERFECT COMPANION FOR OUR MOTHERBOARD

* 2 DRIVE FLOPPY DISK CONTROLLER
* INCLUDES SERIAL PORT, PARALLEL PORT

GAME PORT AND CLOCK/CALENDAR
WITH BATTERY BACK-UP

* SOFTWARE FOR ARAMDISK, PRINT SPOOLER
AND CLOCK/CALENDAR

MO-SERIAL 2nd SERIAL PORT $\$ 1595$

MCT-IO

$\$ 59.95$
USE WITH MCT-FH FOR A MINIMUM OF SLOTS USED

* SERIAL PORT ADDRESSABLE AS COM1. COM2.

COM3 OR COM4

* PARALLEL PRINTER PORT ADDRESSABLE AS LPT 1 OT LPT $2(\times 378$ OR $\times 278)$
- CLOCK/CALENDAR WITH A BATTERY

BACK-UP
I0-8ERINL 2nd SERIAL PORT

МСТ-АTIO

$\$ 59.95$
USE WITH MCT-ATFH FOR A MINIMUM ÖF SLOTS USED

* SERIAL PORT ADDRESSABLE AS COM1. COM2. COM3 OR COM4
PATA OR PRINTER PORT ADDRESSABLE AS - GAME PORT
* USES 16450 SERIAL SUPPORT CHIPS FOR HIGH SPEED OPERATION IN AN AT
ATID-8ERINL
2nd SERIAL PORT

RAM CARDS

FROM MODULAR CIRCUIT TECHNOLOGV

MCT-RAM

$\$ 69.95$
A CONTIGUOUS MEMORY SOLUTION FOR YOUR SHORT OR REGU_AR SLOT SHORT SLOT, LOW POWER PC COMPATIBLE DESIGN
CAN OFFER UP TO 576K OF ADDITIONAL MEMORY
MEMER SELECTABLE CONFIGURATION AMOUNTS OF 192, 384, 512, 256 \& 576K,

MCT-ATRAM

A POWER USER'S DREAM, $4 M B$ OF MEMORY FOR THE AT
USER EXPANDABLE TO 2MB OF ON-BOARD MEMORY
USES FULL 16 BIT PARITY CHECKED MEMORY FLEXIBLE STARTING ADDRESS. ROUND OUT CONVENTIONAL MEMORY TO GaOK $\&$ ADD
EXTENDED MEMORY ABOVE 1 MB EXTENDED MEMORY ABOVE 1 MB

MCT-ATRAM-MC \$3995
2MB PIGGYBACK BOARD (ZEROK K INSTALLED)

MCT-EMS

\$129.95
2MB OF LOTUS//NTEL/MICROSOFT COMPATIBLE MEMORY FOR THE XT - CONFORMS TO LOTUS /INTEL EMS USER EXPANDABLE TO 2 MB (NO MEMORY INSTALLED)
USE AS EXPANDED OR CONVENTIONAL
MEMORY, RAMDISK OR SPOOLER SOFTWARE INCLUDES EMS DEVICE DRIVERS, PRINT SPOOLER AND RAMDISK

MCT-ATEMS
at Version of the mct-ems
$\$ 139^{95}$

S Seagate

 HARD DISK SYSTEMS 20 MB 30 MB \$339 \$399Systems include half height hard disk drive, hard disk drive controller cables and instructions. Drives are pre-tested and warranted for one year.

dSS Seagate 40 MB AT DRIVE
 FAST 40 ms ACCESS TIME
 $\$ 599$

DISK CONTROLLER CARDS

FROM MODULAR CIRCUIT TECHNOLOGY

 MCT-FDC$\$ 34.95$
QUALITY DESIGN OFFERS 4 FLOPPY CONTROL IN A SINGLE SLOT INTERFACES UP TO 4 FDDS TO AN IBM PC OR COMPAFIBLE
INCLUDES CABLING FOR 2 INTERNAL
DRIVES
USES STANDARO OB37 CONNECTOR
FOREXTERNAL DRIVES
SUPPORTS BOTH DS $/ D D$ AND DS $/ O D$ WHEN USED W/DOS 3.2 OR JFORMAT

MCT-HDC

$\$ 89.95$
HARD DISK CONTROL FOR WHAT OTHERS CHARGE FOR FLOPPY CONTROL IBM XT COMPATIBLE CONTROLLER SUPPORTS 16 DRIVE SIZES INCLUDING 5. 10. 20, 30 \& 40ME DIVIDE 1 LARGE DRIVE INTO 2 SMALLER, LOGICAL DRIVES INGLUDES CABLING FOR 1 INTERNAL
DRIVE DRIVE

MCT-RLL

\$119.95
GET UP TO 50% MORE STORAGE SPACE ON YOUR HARD DISK INCREASES THE CAPACITY OF PLATED MEDIA DRIVES BY SO\%
RLL 2, ENCODING FOR MORE
TRANSFER RATE IS ALSO 50% FASTER;
$750 \mathrm{~K} / \mathrm{sec}$ vS $500 \mathrm{~K} / \mathrm{sec}$
USOK SEC VSTO28 SEC
USE WITH ST 238 DRIVE TO ACHIEVE
30+ MB IN A HALF HEIGHT SLOT

MCT-FH

\$139.95
STARVED FOR SLOTS? SATISFY IT WITH THIS TIMELY DESIGN

* INTERFACES UP TO 2 FDDS \& 2 HDDs
+ CABLING FOR 2 FDDs \& 1 HDD * CABLING FOR 2 FDD 81 HDD DS OD \& DS/QD WHEN USED WITH DOS 3.2 OR JFORMAT
ALL POPULAR HDD SIZES ARE
SUPPORTED, INCLUDING 5, 10, 20.30 \&
CANB
SMALLER, LOGICAI DRIVES

MCT-ATFH

$\$ 169.95$
FLOPPY AND HARD DISK CONTROL IN A TRUE AT DESIGN AT COMPATIBLE. CONTROL UP TO 2
$360 \mathrm{~K} / 720 \mathrm{~K}$ DR 1.2 MB FDOS AS WELL $360 \mathrm{~K} / 720 \mathrm{~K}$ DR 1.2 MB FDDS AS WELL
AS 2 HODS USING THEAT STANDARD AS 2 HODS USING THEAT STANDARD CONTROLTABLES
SUPPORTS AT STYLE FRONT PANEL
LED TO INDICATE HD ACTITY 16 BIT BUSS PROVIDES RAPIO DATA
TRANSFERS
FUELY SUPPORTED BY AT BIOS

MODEM Bainu $\$ 99^{95}$ wins
 PAGE WIRE WRAP WIRE

bargain hunters cormer HYUMDAI MONOCHROME MONITOR

* AMBER SCREEN
* IBM COMPATIBLE
* ATTRACTIVE CASE WITH TILT \& SWIVEL BASE
ONLY \$69.95
SPECIAL ENDS 10/31/87

PRECUT ASSORTMENT IN ASSORTED COLORS $\$ 27.50$

 SPOOLS

Pleasa specify color:
Bliue. Black. Yellow or Red

EXTENDER CARDS

IBM-PC
IBM-AT
\$29.95

WIRE WRAP PROTOTYPE CARDS
FR-4 EPOXY GLASS LAMINATE WITH GOLD-PLATED EDGE-CARD FINGERS

XT

BOTH CARDS HAVE SHK SCREENED LEGENDS
IBM-PR1 WITH +5V AND GROUND PLANE . . . $\$ 27.95$ IBM.PR2 AS ABOVE W/DECODING LAYOUT . . . $\$ 29.95$ AT
BM-PRAT LARGE $5 V 8$ GROUND PLANES $\$ 29.95$

S-100

BARE NO FOIL PADS
HORIZONTALBUS
SINGLE FOIL PADS PER HOLE

APPLE

P500-1 BARE - NO FOIL PADS
$\begin{array}{ll}\text { P500-3 } & \text { HORIZONTAL BUS } \\ \text { P500-4 } & \text { SINGLE FOLL PADS PERHOLE }\end{array}$

$\$ 15.15$
$\$ 22.75$

$s 22,75$
s 21.80
$s 22.80$
530.00

SOCKET-WRAP I.D. ${ }^{\text {TM }}$ * SLIPS OVER WIRE WRAP PINS

* IDENTIFIES PIN NUMBERS ON WRAP SIDE OF BOARD
SAMBERS ON WRAP - CAN WRITE ON PLASTIC: SUCH AS IC \# $\begin{array}{cccc}\text { - CAN WRITE ON PLASTIC: SUCH AS IC } \\ \text { PINS } & \text { PARTH } & \text { PCK. OF } & \text { PRIC } \\ 8 & \text { IDWRAP } 08 & 10 & 1.95 \\ 14 & \text { IDWRAP } & 10 & 10\end{array}$ $\begin{array}{llll}16 & \text { IOWRAP 16 } & 10 & 1 \\ 18 & \text { IOWRAP 18 } & 5 & 1 \\ 20 & \text { IDWRAP 20 } & 5 & 1 \\ 22 & \text { IDWRAP 22 } & 5 & 1 \\ 24 & \text { IDWRAP 24 } & 5 & 1 \\ 28 & \text { IDWRAP 28 } & 5 & 1 \\ 40 & \text { IDWRAP 40 } & 5 & 1 \\ & \end{array}$ EASE ORDER BY NUMBER
PACKAGES (PCK. OF)

CAPABITORS					
TANTALUM					
$1.00{ }^{4}$	15 V	35	. $47{ }^{\prime \prime}{ }^{\prime}$	35 V	. 45
6.8	15 V	70	1.0	35 V	45
10	15 V	. 80	2.2	35 V	65
22	15 V	1.35	4.7	35 V	85
. 22	35 V	. 40	10	35 V	1.00
DISC					
10 p	50 V	05	680	50 V	05
22	50 V	. 05	.001/4	50 V	05
27	50 V	. 05	. 0022	50 V	. 05
33	50 V	. 05	. 005	50 V	05
47	50 V	. 05	. 01	50 V	07
68	50 V	. 05	02	50 V	07
100	50 V	. 05	. 05	50 V	. 07
220	50 V	. 05	1	12 V	. 10
560	50 V	. 05	. 1	50 V	. 12
MONOLITHIC					
0104	50 V	. 14	1, 4	50 V	18
047,/	50 V	15	47	50 V	. 25
ELECTROLYTIC					
	DIAL			IAL	
$1 /{ }^{\text {f }}$	25 V	. 14		50 V	. 14
2.2	35 V	. 15	10	50 V	. 16
4.7	50 V	. 15	22	16 V	. 14
10	50 V	. 15	47	50 V	. 20
47	35 V	. 18	100	35 V	25
100	16 V	. 18	220	25 V	. 30
220	35 V	. 20	470	50 V	. 50
470	25 V	. 30	1000	16 V	. 60
2200	16 V	. 70	2200	16 V	. 70
4700	25 V	1.45	4700	16 V	1.25

FRAME STYLE TRANSFORMERS

12.6 VACCT	2 AMP	5.95
$12.6 V A C C T$	4 AMP	7.95
12.6 VACCT	8 AMP	10.95
25.2 VACCT	2 AMP	7.95

25 PIN D-SUB GENDER CHANGERS
\$7.95

SWITCHING POWER SUPPLIES
PS-IBM
\$69.95

- FORIBM PC-XI COMPATIBLE
- 135 WATTS
$+5 V @ 15 A .+12 V @ 4.2 A$
ONE YEAR WARRANTY
PS-IBM-150 \$78.95
* FOR IBM PC-XT COMPATIBLE
* 150 WATTS
+12 V @ 5.2A. +5 V @16A ONE YEAR WARRANTY

PS-AT

$\$ 89.95$
FOR IBM PC-AT COMPATIBLE
220 WATTS
5V @ 22A, +12V@8A
YEARwARRANTY
1/4 WATT RESISTORS
5% CARBON FILM ALL STANDARD VALUES FROM 1 OHM TO 10 MEG. OHM

	RESISTOR NETMORMS		
SIP	10 PIN	9 RESISTOR	.69
SIP	8 PIN	7 RESISTOR	.59
DIP	16 PIN	8 RESISTOR	1.09
DIP	16 PIN	15 RESISTOR	1.09
DIP	14 PIN	7 RESISTOR	.99
DIP	14 PIN	13 RESISTOR	.99

SPECIALS ON BYPASS CAPACITORS	
01 lf CERAMIC DISC	
	100/s10.00
μt	100/s6.50
μt	

PS-A
$\$ 49.95$
USE TO POWER APPLE TYPE
SYSTEMS, 79.5 WATTS
$+5 V @ 7 A,+12 V @ 3 A$
$+5 V @ 5 A .12 V @ 5 A$

- APPLE POWER CONNECTOR

PS-1558
$\$ 34.95$
75 WATTS, UL APPROVED
$+5 \mathrm{~V} @ 7 \mathrm{~A},+12 \mathrm{~V} @ 3 \mathrm{~A}$
BOOKS by STEVE CIARCIA
BIULD YOUR OWN
CIRCUIT CELLAR VOL 1
CIRCUIT CELLAR VOL 2
CIRCUIT CELLAR VOL 3
CIRCUIT CEELAR VOL 3
CIRCUIT CELLAR VOL 4
CIRCUIT CELLAR VOL 4
CIRCUIT CELLAR VOL 5

MUFFIN FANS
$\begin{array}{rr}3.15^{\prime \prime} & \text { SQ } 14.95 \text { 3.63* SO } \\ 3.18^{\prime \prime} \text { SOUARE } 16.95\end{array}$ 6^{\prime} LINE CORDS
$\begin{array}{llrr}2 \text { conductor } & 39 & 3 \text { conductor } & .99 \\ 3 \text { conductor } w / \text { temate socket } & 1.49\end{array}$ EMI FILTER \$4.95

NEW STORE HOURS! M-F: 9-7, SAT: 9-5 \& SUN: 12-4
T1 Visit our retail store located at 1256 S . Bascom Ave in San Jose, (408) 947 -8881
E. HDR Microdevices

110 Knowles Drive, Los Gatos, CA 95030 Toll Free 800-538-5000 - (408) 866-6200 FAX (408) 378-8927 • Telex 171-110

TERMS: Minimum order $\mathbf{\$ 1 0 . 0 0}$. For shipping and handing include $\mathbf{5 2 . 5 0}$ for UPS Ground and 53.50 for UPS Air. Orders over 1 lb . and toreign orders may require adtitional shipping charges-please contact our sales department tor the amount. CA. residents otherwise stated. Prices are subject to change without notice. We are not responsible tor typographical enors. We reserve the right to limit quantities and to substiture manutacturer. All merchandise subject to prior sale. A full copy of our terms is available upon request.

COPYRICHT 1987 JDR MICRODEVICES
THE JOR MICRODEVICES LOGO IS A REGISTERED TRADEMARK OF JDR MICRODEVICES. JDR INSTRUMENTS AND JDR MICRODEVICES ARE TRADĖMARKS OF JOR MICRODEVICE'S.
IBM IS A TRADEMARK OF INTERNATIONAL BUSINESS MACHINES CORPORATION. APPLE IS A TRADEMARK OF APPLE COMPUTER.

Radio Shaek Parts Plaee ONE-STOP PARTS SHOPPING-NEIGHBORHOOD CLOSE

(4)

(5)
(7)

Reliable Relays

Buzzer Bonanza

(19) Tri-Sound Siren. Wiring options for three unique sounds. Built-in IC, driver. \#273-072 5.95 (20) Electronic Chime. Pleasant "ding-dong" output.
\#273-071
7.95

Computer Hookups

Fig.	Type	Cat. No.	Each
4	D-Sur 25 Male	$276-1059$	3.99
5	D-Sub 25 Famale	$276-1565$	3.99
6	Printer Maie	$276-1533$	4.99
7	Printer Female	$276-1523$	4.99

(1) TDA 7000 FM Receiver. Build your own custom FM monitor. Combines an RF mixer, IF and demodulator stages in one monolithic IC. PLL system with 70 KHz IF. \#276-1304

New Mini-Notebook

Learn by building Morse code telegraphs, light-wave communicators, more. \#276-5015

Breadboard Bargains

NEW!

(14)

(13)
(12) Super-Bright LED. 300 mcd outpu \#276-066

Project Lighting

 (13) 1.5 V (13) $1.5 \mathrm{~V} \mu \mathrm{Lamps}$. \#272-1090 1.19$2 / 1.19$ (14) Super-Jumbo LED. Six elements in 20 mm display. $\# 276$-064

Audio Amp / Speaker

Makes an

Excellent
Test Amp

Dozens of uses-get one for your test bench. Ready-to-use amp features high-gain IC design and $200-$ mW output. $1 / \mathrm{s}^{\prime \prime}$ input/output phone jacks. \#277-1008

550 Indexed Connection Points. Silver-nickel contacts accept 22 to 30-gauge wire \#276-174 ... 11.95 270 Indexed Connection Points. Two bus strips. \#276-175 ... 7.49

Look! New Devices

 (21)(22)
\square
(23)

(21) 335 pF Variable Capacitor. Two-section. \#272-1337 4.95 (22) 100,000 MFD Cap. Really handy for CMOS memory backup. 5.5 WVDC. \#272-1440 (23) Thermistor \#271-110 ... 1.99

(2) Speech Synthesizer IC. Re quires 3.12 MHz crystal (specialorder) \#276-1784
12.95
(3) Text-to-Speech IC. Use with above. Requires 10 MHz crystal (special-order). \#276-1786 . 16.95

Battery Data Book
 Indispensable

Explains how batteries work, different types, performance data and applications. \#62-1396 1.99

Power Supply Parts

(24) "AA" Battery Holder.
\#270-391
(25) $5 \times 20 \mathrm{~mm}$ Fuse Holder
\#270-1238
Inline. \#270-1281
(26) Panel Meter. \#270-1754 795
(27) 'Gator Clips. \#270-347 . 10/1.69

Remote Command Center 24^{95}

Use with Plug 'n Powerv Modules (below) to turn lights and appliances on or off from chair or bedside. \#61-2690 Appliance Module. \#61-2681, 12.95. Lamp Dimmer. \#61-2682, 12.95. Wall Switch. \#61-2683, 12.95. Universal Appliance. \#61-2684, 13.95

Pocket Autoranging VOM NEW! 24^{95}
The mighty midget! Features "beep" continuity, autopolarity, low-battery indicator. Measures to 400 volts $A C / D C$ With probes, case batteries. \#22-171

Over 1000 items in stock: Binding Posts, Capacitors, Chokes, Diodes, Enclosures, Fuses, Inductors, Jacks, Knobs, Lamps, LEDs, Motors, Multitesters, Optoelectronics, PC Boards, Rectifiers, Relays, Resistors, SCRs, Solder, Tools, Transformers, Transistors, Triacs, Wire and more!

Prices apply at participating Radio Shack stores and dealers

Dual-tracking power Supply

Tight Regulation And Low Ripple

Our Micronta bench supply delivers rock-stable DC voltages adjustable from 0 to +15 VDC , or connect in series for up to 30 VDC. Selectabie independent or slave operation. Rated 1 amp per channel, maximum. UL listed AC. \#22-121

What's New at AMERICAN DESIGN COMPONENTS?

'The Source" of the
electro-mechanical components
for the hobbyist.

\mathbf{W}^{\prime}e warehouse 60,000 tems at American Design Components - expensive, often hard-to-find components for sale at a fraction of their original cost! You'll find every part you need - either brand new, or removed from equipment (RFE) in excellent condition. But quantities are limited. Order from this ad, or visit our retail showroom and find exactly what you need from the thousands of items on display.

Open Mon. - Sat., 9 -5
THEREPS NO RISK.
With our full 90 -day warranty.
any purchase can be returned for
any reason for full credit or refund.
ADAM COMPUTER

ADAM COMPUTER

LLess

$31 / 2^{\prime \prime} 10 \mathrm{Mb}$
HARD DISK DRIVE (IBM ${ }^{\ominus}$ Compatible)

Fits standard $51 / 4^{\prime \prime}$ spacing. Shock mounted. High speed, low
power Mir Rodime $\#$ RO252F Hem \#10151 \$159.00 New Controller Card for above Item\#10150 \$89.00

MUFFIN
TYPE
FANS

$15 \mathrm{VAC} / 60 \mathrm{~Hz}$.; 21 W .28 A 3100 RPM; 5 -blade model; aluminum housing. Can be mounted for blowing or exhaust
NEW - Item \#1864 \$12.95
USED - Howard Ind 3-15-3455
Item \#5345 \$5.95
$12 / 24$ VDC
MUFFIN ${ }^{\text {® }}$
TYPE
FANS
55/100 CFM

8 W . Can be mounted for blow. ing or exhaust. Alum. housing. brushiess, ball-bearing type.
1" Thin: 5 plastic blades
w/feathered edges.
Centaur CUDC24K4-601
Item \#8541 \$19.95 New
$11 / 2^{\prime \prime}$ Standard: 5 plastic blades Centaur CNDC24K4-601

48 TPI (IBM ${ }^{\text {© }}$ Compat.) Double sided/double density, full height drive 48 T.P.I., 80 tracks Mfr - Tandon TM100 2
(IBM ${ }^{\text {© }}$ Compatible) Double sided, single/double density; 80 track
Mtr - Panasonic \#JU 475 Item \#10005 \$119.00 New

27 CINI

FANS
115 VAC ;
$50 / 60 \mathrm{~Hz}$
12W. Low noise
level fans, can be
mounted for biow
ing or exhaust.
$11 / 2^{\prime \prime}$ STANDARD
7 metal blades

Item $\# 7928$
$\$ 79.00$
2 for $\$ 150.00$
96 TPI, DS/Quad Density

MICROCOMPUTERS
with EPROM

The MC68701 is an 8 -bit single chip microcomputer unit which enhances the capablities of the M6800 family. TTL compatible. requires ane -5 V power supply for nonprog operation. Includes 2048 bytes of eprom, 128 bytes of RAM, serial comm, interface (SCI), parallel 1 O , and a 3 -function $\$ 9.95$ timer Item $\mathbf{4 9 6}$
$\$ 9.95$ (house numbered)

MC68705 HMOS, 8 bit, medi um performance microcomputer. On-chip resources 3776 bytes Eprom, 112 bytes RAM 8 inputs \& 24 programmable bidirectional outputs. Self programming boot
strap.

DOS 3.2 Compatible 96 TPI, DS/QUAD DENSITY andon TM55D-4 tem \#1904 . \$79.00

ANALOG to DIGITAL CONVERTER

Binary output: 12 bit. Conversion time: 8 ms . Linearity: 8 ms . $1 / 2 \mathrm{lb}$. Parallel and series our puts; internal reference
Mfr - Datel ADC-HZ 12BGC Item \#7052 (RFE-tested good Originally $\$ 130.00$ Special - \$39.95
NS 87P50D-11 MICROCOMPUTER

8 -bit single chip microcomputer emulates: 8048/49/50. Piggy-back config alows you to piug in eprom
2758 \& $2716.2732 . ~ X M O S . ~$
V $8-16$ bit, 4 K directaccess. memory 256 bits ROM, 11 MHz . max, frea. 256 bits ROM, 11 MHz . max, frea
Item $\$ 8899 \quad \$ 24.95$ New

PUMPS-COMPRESSORS-BLOWERS-MOTORS-POTENTIOMETERS-COUNTERS TIMERS-RELAYS-VOLTAGE REGULATORS-POWER SUPPLIES

ColecoVision Game

Gives your Adam fast, reliable data storage \& retrieval. Can hoid up to 160 K bytes of information. Uses industry-standard SS/DD disks. Connects disectly to your Adammemory console. Comes w/disk drive power supply, Disk Manager disk and owner's manual
Mfr - Coleco, model 7817
Item \#12830 LikeNew - \$199.00
ADAM Accessories
ColecoVision to Adam
Expansion Kit
em \#9918 \$59.50
Adam Printer -
Item \#8839 \$69.50
Data Drive -
Item \#6641 \$19.95
Printer Power Supply
Item \#6642 \$14.95
ASCII Keyboard -
Item \#6643 \$19.95
Controllers
(Set of 4) 1 tem $\# 7013 \quad \$ 9.95$
Adam Cassettes
(Consisting of Smart Basic, Buck Rogers \& blank cassette.) Item \$7786

BAKER'S DOZEN - \$19.95
Adam Link Modem -
(Software included.)
item \#12358 \$29.95
Auto-Dialer
Address Book

Complete unit without housing. Can be easily mounted on any base. Contains: game board, 2 controllers, power supply, TV game swit
ial cable. Item \#7411. \$19.95

Coleco Vision.

Expansion Module \#2
Allows you to play arcade quality
driving and racing aames drving and racing games on
Colecovision. incl. ${ }^{\text {TURBO }}$ Cortridge
Item \#13146 $\quad \$ 39.95$ New
Super Action
Controller Set
Gives you individual control of 4 or more on-screen piayers. Incl 'BASEBALL" cartridge.
Item \#13148 \$39.95 New Roller Controller Gives you full 360° game control. Brings home the high-speed action of an arcade. Can also be used with the Adam, Includes "SLITHER" cartridge.

48-KEY - Timex 281/1000 tem $\ddagger 6712$ \$5.95 New 66-KEY - Commodore C-16 lem $\# 9394$ \$5.95 New 75-KEY - Timex or Adam For computer upgrade. tem $77429 \$ 5.95$ New

AUDIO \& VIDEO

 MODULATORDesigned for
use with TI use with TI
computers. Can be used with video cameras. games, or other audiovideo

audiovideo

 sources. Built-17A^{\prime} ' switch enables A B switch enables user to switch from dV antenna without disconnection. Channel 3 or 4 selection. Operates on
12 VOC Schematic include 12 VOC . Schematic included IBM and Apple compatible. Mfr - TI \#UM $1381-1$

12", High Resolution
TTL'MONITOR

TTL MONITOR

$12 \mathrm{VDC} / 11 \mathrm{O} \mathrm{VAC}$ (w/built-in power supply). Green phosphor utd. in metal housing Schematic supplied
Mtr - Capetronic $\# \mathrm{DS}-1030$: tem \#6811 \$19.95 New
RECORDING TAPE $71 / 2{ }^{\prime \prime}$ Reel,

Bulk erased. Major mfrs Ampex, Scotch, etc. Atem \#6741 - \% Mii.

79¢ ea. 3 for $\$ 2.00$

JOYSTICK
CONTROLLERS

Fits Atari, Apple, Commodore, and our Item \#10336 PC8300 Computer. Has $4-\mathrm{ft}$. cord w/plug Dimen.

NEON TRANSFORMER (Hi-Voltage)

7300 VAC
 @ 5 Ma.

May be used for powering neon lights, replacing oil burner ignition der (spark gap). A high-volt output: $1 /$ quick connect terminal \& case ground input fully enclosed metal case. Weight: 12 lbs . Base mount: $41 / 2^{\prime \prime} \mathrm{H} \times 5^{1} /{ }^{\prime \prime} \mathrm{W} \times 6^{7} / \mathrm{B}$ Item \#151 \$9.95 RFE

"The First Source" - for electromechanical \& electronic equipment and components - AMERICAN DESIGN COMPONENTS!

PC 8300
HOME COMPUTER
(Advanced version of the
Timex 1000)

42-key mechanical keyboard (not mem brane). Contains 2 K of RAM. Rever 8 K BASIC Graphics Mapabityisound music TV or monitor joystick input operates an 115 VAC Includes: AC adapter TV cable and pair of cassette cables. Will run all prerecorded tapes for Sinclair/Timex 1000-2×81
Mfr - Power 3000. In orig. boxes. Item \#10336 \$29.95 New

Accessories

* 16 K RAMPACK upgrade Item \$10337 \$9.95 New
* 32K RAMPACK upgrade Item $\$ 12148 \$ 19.95$ New \star COLOR PACK Item \#12147 \$19.95 New

15" COMPOSITE

 VIDEO MONITOR
$15^{\prime \prime}$, green phosphor, high res. 112 lines enter \& bandwidth from 10 Hz to 30 H 3 dB . Operating voly
$50 / 60 \mathrm{~Hz} \quad 65 \mathrm{~V}$ a
Mfr - Motorola - Alpha Series

SWITCHING POWER SUPPLIES

115 \& 230V, $47-440 \mathrm{~Hz}$. Input: 90-135V/180-270V Output: $\begin{array}{r}\text { 5VDC @ } 9.5 \mathrm{~A} \\ +12 \mathrm{VDC} @ .4 \mathrm{~A}\end{array}$ 12VDC@.3A Perforated metal case enclosure Dim. $9^{1 / 2}{ }^{\prime \prime} L \times 3^{1 / 2}{ }^{\prime \prime} W \times 2^{\prime \prime} H$ Mfr - General Instrument Item \#7983 \$14.95 New

$\left\lvert\, \begin{aligned} & \text { PLUG-IN } \\ & \text { POWER SUPPLIES }\end{aligned}\right.$

OUTPUT + 5 VDC. 9A
5 VDC .1 A
12 VDC .3 A INPUT: $120 \mathrm{VAC} / 60 \mathrm{~Hz}, 25 \mathrm{~A}$ Mfı Coleco $\# 55416$
Item $\# 1882 \quad \$ 4.95$ New

COMPUTER GRA
POWER SUPPLY

DC Output -5V@.5 amp
5V@5amp
-5V@3amp.
 input $175 \mathrm{~V} / 60 \mathrm{~Hz}$. Dim. $9 \mathrm{~V} / 4$
$\times 3^{3 / 4} \mathrm{H}$. (Rubber ft . incl.)

12V@450ma

 Contains 10 AA cells Recharge rate: 45 ma . $16-18$ hours.Dim.: $2^{11}{ }^{15} \mathrm{H} \times \mathrm{I}^{1 / 4}{ }^{\prime \prime} \mathrm{W} \times 2^{15}$ $\mathrm{Dim}: \mathrm{GE}^{2} 123233$ or equiv.
Mfr Hem $\$ 5443 \quad \$ 5.95$ New
"'D" CELLS Dual Pack
2.4V@1.2Ah

2 D cells stack
2 D cells, stacked \& series connected (easily ganged for carry.
ing). Recharge in 12.44 hrs ing). Recharge in 12-14 hrs OA (imem $\$ 12142$ (pack of 2) $\$ 5.95$
(Maiormtrs.) 5 packs $\$ 25.00$

Hem \#10044 $\$ 34.95$ New
COMPUTER \& GAME EQUIPMENT-ACCESSORIES-MODULES ELECTRONIC COMPONENTS - INTEGRATED CIRCUITS - OPTICS

Insides of the
COMMODORE
COMPUTER

Commodore VIC 20 CPU board \& mechanical keyboard. For parts only - guaranteed not to work Item \#12144
$\$ 14.95$ RFE

COMMODORE

CARTRIDGES

C-64
Consists of 12 asstd cartridges. Includes: Number Nabber, Star Post, Financial Advisor, Radar Rat, Jupiter Land, Magic Compos, Viduzzles, Golf, Easy Calc, Simon Basic, Dragon's Den, \& ABC Voice. Simon Basic
Set of 12
Item $\# 13573$
$\$ 49.95 \mathrm{New}$

C16 \& + 4
Consists of 9 asstd. cartridges. includes: Script + 2, Calc Plus, Script + , Jock Script +2 , Ca/c Plis, Script + Jock
Attack, Pirate Adventures, Atomic Miss, Attack, Pirate Adventures, Atomic Miss,
Strange Odyssey, Financial Advisor, and Strange Odysse
Logo. Set of 9. Logo. Set of 9
Item $\# 13572$ Item \#13572.

INTEGRATED CIRCUITS

Linear		DS8T28N	\$ 1.57	75115	\$1.07
LH0002CN	\$5.35	LM1456V	1.75	75123 N	1.34
LM 10CLH	2.65	LM1458N	. 44	75124 N	1.34
LH0070-OH	3.55	LM1488N	62	75138 N	2.65
TL071CP	. 53	LM1496N	. 90	75154 N	1.25
TLO72CP	. 71	LM1899N	1.43	75450 N	. 53
LM301N	. 32	ULN2003A	90	75451 CN	. 44
LM307N	. 41	DS26LS31CN	1.34	75452 CN	44
LM310N	1.16	DS26LS32CN	1.34	75453CN	44
LM311N	. 41	LM2901N	53	75463 N	53
LM317K	2.65	LM2903N	53	75472	. 80
LM3 7 7L	62	LM2907N	1.75	$75492 N$. 71
LM317MP	. 80	LM2917N	1.39	76477	3.55
LM317T	90	4N	1.34		

-10

LM317T
LM318N
LM319N

28000 Series

280

Z80-CTC
Z80-DART
Z80-DMA
Z80-DMA

280-PIO 280-SIO/1 280A | Z8OA-DART | 1.66 |
| :--- | ---: |
| | 4.72 | Z80A-DMA Z80A-PIO Z80B Z80B-CTC

Z80B-PIO EPROMS TMS2532 \$3.55 | TMS2564 | 8.05 |
| :--- | ---: | 2708 TMS2716 2716 27 Cl 16

2732 $2732 \mathrm{~A}-25$ $27 C 32$ 2764-25 2764A-25 27 C 64 27128-25 27128A-25 $27256-25$
$27 \mathrm{C} 256-25$ $\begin{array}{lrlrlr}\text { NE558N } & 1.07 & 7924 \mathrm{~T} & .53 & 27256-25 & 1.15 \\ \text { NE564N } & 1.75 & 79 \mathrm{~L} 12 \mathrm{AC} & .53 & 27 \mathrm{C} 256-25 & 12.55 \\ \text { LM565N } & .90 & 79 \mathrm{~L} 15 \mathrm{AC} & .53 & 68701 & 9.95 \\ & 1.25 & \text { LF } & 68705 & 9.95\end{array}$ $\begin{array}{r}12.55 \\ 9.95 \\ \hline 9.95\end{array}$ $\begin{array}{lrlrl}\text { LM566CN } & 1.25 & \text { LF13201N } & 2.33 & 68705 \\ \text { LM567V } & .80 & \text { LM13600N } & 1.07 & 6800 \text { Series }\end{array}$ NE570N 2.24 LM1889 NE571N NE592N LM748CN

Abstract

LAMP

Multi position, 30 completely adjustable swing arm with 3-way metal C-clamp Has $4^{\prime \prime}$ diopter magnifying lens, with ruler. Por celain lamp socket, and on/off switch; uses up to a 60 W bulb. Color: Beige UL listed
MINI MICRO COMPUTER
LAMP
Multi position, 30",
completely adjustable
swing arm with 3-way
metal C -clamp Has 4 diopter
magnifying iens, with ruler. Por
celain lamp socket, and on/off
switch; uses up to a 60 W bulb.
Color: Beige. UL lisied.
Item \#13136 \$24.95 New

AMERICAN DESIGN COMPONENTS, 62 JOSEPH STREET, MOONACHIE, N.J. 07074 MINIMUM

YES! Please send me the following items

Item No.	How Many?	Description	Price	Total
Total Shipping \& handling, we ship UPS unless otherwise specified. Add $\$ 3$ plus 10\% total. Canadian: $\$ 3$ plus PO. cost. Charge only.				
$\begin{gathered} C_{\text {wh }} \\ \text { with } \end{gathered}$		Sales Tax (N.J. residents only, please add 6% of total)		

\square My check or money order is enclosed. \square Charge my credit card.
\square Visa Master Card \square Amex RE-107 Card No.

Exp. Date Signature

Telephone: Area Code Number
Name
Address
City
State
Al/ inquiries and free catalog requests call 201-939-2710.
For all phone orders, call TOLL-FREE 800-524-0809. In New Jersey, 201-939-2710.

26 IC's including 6502A and 6560 2 ea. 6522, 2 ea. 8128, 2 ea. 901486 3 ea. 2114. Not guaranteed but great for replacement parts or experimentati

XENON FLASH TUBE 3/4" $\times 1 / 8$

POLARITY

 SWITCH2008 Designed to control an on a satellite system. Ideal for parts and many other parts on a P.C. board
CAT\# RDPS

IGHT ACTIVATED MOTION SENSOR

THIRD TAIL LIGHT
 CAT\# LED-4 10 for GREEN $\$ 1.00$ each BI - POLAR LED $\square \square$ Lights RED one direction GREEN the other. Two lead

		(1)	SOUND AND VIDEO	TELEPHONE COUPLING
STORES	MAIL ORDERS	TOLL FREE		TRANSFORMER
LOS ANGELES	ALL ELECTRONIC P.O.BOX 567	800-826-5432	TI\# UM1381-1. Designed for	STANCOR
RMO	VAN NUYS,	INFO:(818) 904-05248	use with T.I. computers. Can	\# TTPC-8
LOS ANGELES, 90006	1408	FAX:(818) 781-2653 LANTITIES LIMITED	games or other audio/video	600 ohms c
$380-8000$	X-101010163	MINIMUM ORDERS 510.00 VISA	sources. Built in A / B switc	to 600 ohris c.t
VAN NUYS	ALL ELECTRONICS	CALIF: ADD SALES TAX	T.V. antenna without discon-	P.C. board mount. $3 / 4 " \times 5 / 8 " \times 3 / 4$
6228 SEPULVEDA BLVD. VAN NUYS, CA 91411 (818) 997-1806	Foreign Customers send $\$ 1.50$ postage for FREE Catalog!	FOREIGN ORDERS: include sufficient SHIPPING	nection. Operates on 3 or 4. Requires 12 Vdc . Hook up diagram included. CAT\# AVMOD $\$ 5.00$ each	$\frac{\text { CAT }}{\$ 2.50 ~ e a c h ~}$

CIRCLE 107 ON FREE INFORMATION CARD

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free Information Number		Page	120. 205	Elephant Electronics	78.79	181	NTS	79
81	A.I.S. Satellite	79	100	Firestik II	. 105	71	New-Tone Electronics	24
108	AMIC Sales	. . 22	-	Fordham Radio	Cl 4	182	Nohau	102
107	All Electronics	. 125	-	GE/RCA	28	196	NuScope Associates.	100
103	Allen W.B.	. 38	-	Grantham College of Engineering	$\ldots 30$	201	OCTE Electronies	79
-	Amaking Devices	. 1111	62	llameg	. 20	110	Omnitron	31
2101	American Design Components	122.123	86	Heath 8.9	-	Pacific Cable	107
77	B\&K Precision	5	194	Hitachi Denshi America	14	204	Parts Express	$10 \times$
98	Reckiman Indüstrial	33	-	ICS Computer Training	101	78	Radio Shack	121
85	Blue Star Industries	78	-	1SCEI	105	184	Satellite TV Week Mag.	81
109	C © S Sales	13	208	Inverter Technologies	101	186. 187	Sencore	23.25
-	C.O.M.B.	15. 26	65	J \& W	. .7	188. 189	Sencore	27. 29
60	CIE	19	59	JDR Insiruments	3	180	Silicon Valley Surplus.	110
197	Cabletronics	. 78	113. 176	.JDR Microdevices 1	116.117	209	Simpson	77
-	Caribbean Electronics Mag.		177. 178	.JDR Microderices 1	118.119	74	Solid state Sales	111
20.3	Circuit Cellar	79	179	JIDR Microdevices	120	94	Star Circuits	79
-	Command I'roductions.	104	114	Jameco 1	114.115	-	Symmetric Sound	78
55	Contact East	79	10.4	Jan Crystals	$\ldots 22$	192	TSM	11
199	Cook's Institute	22	183	L,it Bitty Tester.	. 102	92	Tektroniv	CV2
195	Cristek	. .12	87	MCM Electronics	. 113	185	Tentel	12
212	Daetron	126	190. 211	Mb) Electronics	78.79	123	Test Probes	21
127	Deco Industries'.	78. 79	93	Mark V. Fleetronies	109	210	Trans Am	105
82	Digi-key	124	-	McGraw Hill Book Club	68	1102	Trio-Kenwood	32
-	Digital Research Computers	108	63	Miero-Mart	. 112	60	W.S. Jenks	104
19.3	Electronic Satvage Parts.	112	61	Microprocessors Unttd.	. 100	191	WPT Publications	102
-	Electronic Technology Tuday	CV3	-	NRI 4 .	1.34. 37			

DOES YOUR DIGITAL CAPACITANCE METER DOTHIS?

FULL 4 DIGIT 0.5 INGH LCD DISPLAY COMPLETELY AUTORANGING WITH 10 RANGE MANUAL CAPABILITY

Gernsback Publications, Inc.
500-B Bi-County Blud.
Farmingdale, NY 11735
(516) 293-3000

President: Larry Steckler
Vice President: Cathy Steckler
For Advertising ONLY
516-293-3000
Larry Steckler publisher
Arline Fishman advertising director
Shelli Weinman advertising associate
Lisa Strassman
credit manager
Christina Estrada
advertising assistant

SALES OFFICES

EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
259-23 57th Avenue
Little Neck. NY 11362
718-428-6037, 516-293-3000

MIDWEST/Texas/Arkansas/

Okia.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road-Suite 339
Northfield, IL 60093
312-446-1444

PACIFIC COAST/ Mountain

States

Marvin Green

Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1.818-986-2001

Electronics Paperback Books

 EVERY BOOK IN THIS AD \$6 OR LESS!

\square BP125- $\mathbf{2 5}$ SIMPLE AMATEUR BAND ANTENNAS..... $\mathbf{\$ 5 . 0 0}$. All are inexpensive to build, yet perform well. Diodes, beams, triangle and even a mini rhombic.
\square BP128-20 PROGRAMS FOR THE ZX SPECTRUM AND 16 K ZX82.....S5.75. Included with each program is a flow chart and a description of what happens. Notes for converting programs for use on other computers are also included.
\square 160-COIL DESIGN \& CONSTRUCTION MANUAL..... \$5.95. How the hobbyist can build RF, IF, audio and power coils, chokes and transformers. Cavers AM, FM and TV applications.
\square 208-PRACTICAL STEREO \& QUADROPHONY HANDBOOK..... 53.00 . A reference book for all interested in stereo and multichannel sound reproduction.
\square BP99-MINI-MATRIX BOARD PROJECTS..... $\$ 5.00$. Here are 20 useful circuits that can be built on a mini-matrix board that is just 24 holes by ten copper-foil strips.
\square BP157-HOW TO WRITE ZX SPECTRUM AND SPECTRUM + GAMES PROGRAMS.....\$5.95. A crystal-clear step-by-step guide to writing your town graphics games programs.
\square BP117-PRACTICAL ELECTRONIC BUILDING BLOCKS-BOOK 1..... \$5.75. Oscillators, Timers, Noise Generators, Rectifiers, Comparators, Triggers and more.
\square 219-SOLID-STATE NOVELTY PROJECTS..... $\$ 4.95$. Fun projects include the Optomin, a musical instrument that is played by reflecting a light beam with your hand, and many more.
\square BP179-ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS $\$ 5.00$. Data and circuits for interficing the computer to the robot's motors and sensors.
\square BP126-BASIC \& PASCAL IN PARALLEL..... \$4.95. Takes these two programming languages and develops programs in both languages simultaneously.
\square 224-50 CMOS IC PROJECTS.....s5.25. Includes sections on multivibrators, amplifiers and oscillators, trigger devices, and special devices.
\square 225-A PRACTICAL INTRODUCTION TO DIGITAL IC'S.....\$4.95. Mainly concerned with TTL devices. Includes,several simple projects plus a logic circuit test set and a digital counter timer.
\square BP170—INTRODUCTION TO COMPUTER PERIPHERALS..... $\$ 5.95$. Shows how to use a variety of co computer add-ons in as non-technical a way as possible.
\square 227-BEGINNERS GUIDE TO BUILDING ELECTRONIC PROJECTS..... $\$ 5.00$. How to tackle the practical side of electronics so you can successfitly build electronic projects
\square BP169-HOW TO GET YOUR COMPUTER PROGRAMS RUNNING.....\$5.95. Shows how to identify error in program and what to do about them
\square 123-FIRST BOOK OF PRACTICAL ELECTRONIC PROJECTS.....53.75. Projects inctude audio distortion meter, super FET receiver, guitar amplifier, metronome and more.
\square BP24—52 PROJECTS USING IC 741..... \$5.25. Lots of projects built around this one available IC.
\square BP110-HOW TO GET YOUR ELECTRONIC PROJECTS WORKING..... $\$ 5.00$. How to find and solve the common problems that can occur when building projects.

BP33-ELECTRONIC CALCULATOR USERS HANDBOOK..... \$5.75. Invaluable book for all calculator owners. Tells how to get the most out of your calculator.
\square BP36-50 CIRCUITS USING GERMANIUM, SILICON \& ZENER DIODES..... $\$ 5.00$. A collection of useful circuits you'l| want in your library.
\square BP37-50 PROJECTS USING RELAYS, SCR'S \& TRIACS..... $\$ 5.00$. Build priority indicators, light modulators, warning devices, light dimmers and more.
\square BP183-AN INTRODUCTION TO CP/M..... $\$ 5.75$. To run and use programs operating under the CP/M operating system you will find this book extremely usetul.

BP42-SIMPLE LED CIRCUITS..... $\$ 5.00$. A large selection of simple applications for this simple electronic component
\square BP127-HOW TO DESIGN ELECTRONIC PROJECTS..... $\$ 5.75$. Helps the reader to put projects together from standard circuit blocks with a minimum of trial and error.
\square BP122-AUDIO AMPLIFIER CONSTRUCTION..... \$5.75. Construction details for preamps and power amplifiers up through a 100 -watt DC-coupled FED amplifier.
\square BP92-CRYSTAL SET CONSTRUCTION..... $\$ 5.00$. Everything you need to know about building crystal radio receivers.
BP45-PROJECTS IN OPTOELECTRONICS..... $\$ 5.00$. Includes infra-red detectors, transmitters, modulated light transmission and photographic applications.
\square BP48-ELECTRONIC PROJECTS FOR BEGINNERS..... 55.00 . A wide range of easily completed projects for the beginner. Includes some no-soldering projects.
\square BP49-POPULAR ELECTRONIC PROJECTS..... $\$ 5.50$. Radio, audio, household and test equipment projects are all included.
\square BP51-ELECTRONIC MUSIC AND CREATIVE TAPE RECORDING..... $\$ 5.50$. Shows how you can make electronic music at home with the simplest and mosi inexpensive equipment.
\square BP56-ELECTRONIC SECURITY DEVICES.....55.00. Includes both simple and more sophisticated burglar alarm circuits using light, infra-red, and ultrasonics.
\square BP59-SECOND BOOK OF CMOS IC PROJECTS.....S5.00. More circuits showing CMOS applications. Most are of a fairly simple design.

BP72-A MICROPROCESSOR PRIMER..... $\mathbf{5 5 . 0 0}$. We start by designing a small computer and show how we can overcome its shortcomings
\square BP74-ELECTRONIC MUSIC PROJECTS.....S5.95. Provides the experimenter with a variety of practical circuits including a Fuzz Box, Sustain Unit, Reverberation Unit, Tremeio Generator and more.
\square BP91-AN INTRODUCTION TO RADIO DXING..... $\$ 5.00$. How you can tune in on those amateur and commercial broadcasts from around the world in the comfort of your home.
\square BP94-ELECTRONIC PROJECTS FOR CARS AND BOATS..... 55.00 . Fifteen simple projects that you can use with your car or boat. All are designed to operate from 12 -volt DC suppties.

ELECTRONIC TECHNOLOGY TOOAY INC.
 P.O. Box 240, Massapequa Park, NY 11762-0240

Name
Address
City
State

OUTSIDE USA \& CANADA
Multiply Shipping by 2 for sea mail
Number of books ordered
Multiply Shipping by 4 for air mail
Total price of merchandise
Sales Tax (New York State Residents only)
Shipping (see chart)
All payments must
be in U.S. funds
Total Enclosed

SCOPE $3^{1 / 2}$ Digitial
Multimeters

SCOPE 3112 Digit

Model DVM-634 - 7 function, 32 Model ${ }^{2} 5$
Model DVM-636 - 8 function. 37 ranges $\begin{array}{ll}\text { Model DVM-636 } & 37 \text { ranges } \\ \text { indance } \\ \text { measurement }\end{array}$

SCOPE Pockel Sized Audio Signal Generator

SCOPE $4 \frac{1}{2}$ Digit LCD SCOPE $4 / 1 /$ Digit L
Bench Digital Multimeter

Model DVM-6005 $540-5$
Model RC-555 N 400
Model DCM-602 - $\rightarrow 010$ Test leads included with full scale - 8 ranges win uF values to 2000 UF - LSI circuit - Crys range base Frequency
800 Hz to 8 Hz

SCOPE $3 \frac{1}{2}$ Digit LCD with 8 Full Functions Model DVM-632

ASK FOR FREE CATALOG.
Money orders, checks accepled. C.O.D.'s require 25\% deposit.

Toll Free
800-645-9518
In NY State 800-832-1446

Service \& Shipping Charpe Schedule Continental U.S.A

FOR ORDERS	ADO
\$25-\$100	\$4.50
\$101-\$250	5600
\$251.500	\$80C
\$501.750	\$1050
\$751-1.000	\$12.50
\$1,001-1500	\$16.50
\$1.501-2000	\$20.00
\$2.001 and Up	\$25.00

[^0]: As a service to readers. RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

 RADIO-ELECTRONICS, (ISSN 0033-7862) October 1987. Published monthly by Gernsback Publications, Inc., 500-B Bi-County Boulevard. Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions $\$ 16.97$. Canada $\$ 22.97$. all other countries $\$ 25.97$. All subscription orders payable in U.S.A. funds only. via international postal money order or check drawn on a U.S.A. bank. Single copies $\$ 1.951987$ by Gernsback Publications. Inc. All rights reserved Printed in U.S.A
 POSTMASTER: Please send address changes to RADIO-ELECTRONICS. Subscription Dept., Box 55115, Boulder. CO 80321-5115
 A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^1]: 2 Year LImited Guarantee! Add 5\% for Postage (\$10 max), IL Res., 7% Tax

[^2]: "CHANNELIZER SR." is a trademark of Sencore. Inc

[^3]: Call Today Wats Free 1-800-843-3338
 S三Nの○FF
 3200 Sencore Drive
 Sioux Falls, SD 57107
 605-339-0100 In SD Only
 innovatively designed with your time in mind.

[^4]: 15 teeth $\times 0.25$ inches/turn $\times 10$ turns $=$ 37.5 inches

[^5]: - 15 day maney back guarantee. - $\$ 10.00$ minimum
 order, -COD orders accepted. $\mathbf{2 4}$ nour shipping order, - COD orders accepled. - 24 hour shipping - Shipplng charge $=$ UPS chart rate $(\$ 2.50$ min-
 tmum charge) Hours $8: 30$ e.m. -6 p.m. EST M-F PARTS EXPAESS INTLINC 340 East First St.

